|
import torch.nn as nn |
|
from mmcv.cnn import (ConvModule, caffe2_xavier_init, constant_init, is_norm, |
|
normal_init) |
|
from torch.nn import BatchNorm2d |
|
|
|
from ..builder import NECKS |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
"""Bottleneck block for DilatedEncoder used in `YOLOF. |
|
|
|
<https://arxiv.org/abs/2103.09460>`. |
|
|
|
The Bottleneck contains three ConvLayers and one residual connection. |
|
|
|
Args: |
|
in_channels (int): The number of input channels. |
|
mid_channels (int): The number of middle output channels. |
|
dilation (int): Dilation rate. |
|
norm_cfg (dict): Dictionary to construct and config norm layer. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
mid_channels, |
|
dilation, |
|
norm_cfg=dict(type='BN', requires_grad=True)): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = ConvModule( |
|
in_channels, mid_channels, 1, norm_cfg=norm_cfg) |
|
self.conv2 = ConvModule( |
|
mid_channels, |
|
mid_channels, |
|
3, |
|
padding=dilation, |
|
dilation=dilation, |
|
norm_cfg=norm_cfg) |
|
self.conv3 = ConvModule( |
|
mid_channels, in_channels, 1, norm_cfg=norm_cfg) |
|
|
|
def forward(self, x): |
|
identity = x |
|
out = self.conv1(x) |
|
out = self.conv2(out) |
|
out = self.conv3(out) |
|
out = out + identity |
|
return out |
|
|
|
|
|
@NECKS.register_module() |
|
class DilatedEncoder(nn.Module): |
|
"""Dilated Encoder for YOLOF <https://arxiv.org/abs/2103.09460>`. |
|
|
|
This module contains two types of components: |
|
- the original FPN lateral convolution layer and fpn convolution layer, |
|
which are 1x1 conv + 3x3 conv |
|
- the dilated residual block |
|
|
|
Args: |
|
in_channels (int): The number of input channels. |
|
out_channels (int): The number of output channels. |
|
block_mid_channels (int): The number of middle block output channels |
|
num_residual_blocks (int): The number of residual blocks. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, block_mid_channels, |
|
num_residual_blocks): |
|
super(DilatedEncoder, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.block_mid_channels = block_mid_channels |
|
self.num_residual_blocks = num_residual_blocks |
|
self.block_dilations = [2, 4, 6, 8] |
|
self._init_layers() |
|
|
|
def _init_layers(self): |
|
self.lateral_conv = nn.Conv2d( |
|
self.in_channels, self.out_channels, kernel_size=1) |
|
self.lateral_norm = BatchNorm2d(self.out_channels) |
|
self.fpn_conv = nn.Conv2d( |
|
self.out_channels, self.out_channels, kernel_size=3, padding=1) |
|
self.fpn_norm = BatchNorm2d(self.out_channels) |
|
encoder_blocks = [] |
|
for i in range(self.num_residual_blocks): |
|
dilation = self.block_dilations[i] |
|
encoder_blocks.append( |
|
Bottleneck( |
|
self.out_channels, |
|
self.block_mid_channels, |
|
dilation=dilation)) |
|
self.dilated_encoder_blocks = nn.Sequential(*encoder_blocks) |
|
|
|
def init_weights(self): |
|
caffe2_xavier_init(self.lateral_conv) |
|
caffe2_xavier_init(self.fpn_conv) |
|
for m in [self.lateral_norm, self.fpn_norm]: |
|
constant_init(m, 1) |
|
for m in self.dilated_encoder_blocks.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
normal_init(m, mean=0, std=0.01) |
|
if is_norm(m): |
|
constant_init(m, 1) |
|
|
|
def forward(self, feature): |
|
out = self.lateral_norm(self.lateral_conv(feature[-1])) |
|
out = self.fpn_norm(self.fpn_conv(out)) |
|
return self.dilated_encoder_blocks(out), |
|
|