3v324v23's picture
Add files
c9019cd
import os.path as osp
from functools import partial
import mmcv
import pytest
import torch
from mmcv.cnn import Scale
from mmdet import digit_version
from mmdet.models.dense_heads import (FCOSHead, FSAFHead, RetinaHead, SSDHead,
YOLOV3Head)
from .utils import ort_validate
data_path = osp.join(osp.dirname(__file__), 'data')
if digit_version(torch.__version__) <= digit_version('1.5.0'):
pytest.skip(
'ort backend does not support version below 1.5.0',
allow_module_level=True)
def retinanet_config():
"""RetinanNet Head Config."""
head_cfg = dict(
stacked_convs=6,
feat_channels=2,
anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=4,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]))
test_cfg = mmcv.Config(
dict(
deploy_nms_pre=0,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100))
model = RetinaHead(
num_classes=4, in_channels=1, test_cfg=test_cfg, **head_cfg)
model.requires_grad_(False)
return model
def test_retina_head_forward_single():
"""Test RetinaNet Head single forward in torch and onnxruntime env."""
retina_model = retinanet_config()
feat = torch.rand(1, retina_model.in_channels, 32, 32)
# validate the result between the torch and ort
ort_validate(retina_model.forward_single, feat)
def test_retina_head_forward():
"""Test RetinaNet Head forward in torch and onnxruntime env."""
retina_model = retinanet_config()
s = 128
# RetinaNet head expects a multiple levels of features per image
feats = [
torch.rand(1, retina_model.in_channels, s // (2**(i + 2)),
s // (2**(i + 2))) # [32, 16, 8, 4, 2]
for i in range(len(retina_model.anchor_generator.strides))
]
ort_validate(retina_model.forward, feats)
def test_retinanet_head_get_bboxes():
"""Test RetinaNet Head _get_bboxes() in torch and onnxruntime env."""
retina_model = retinanet_config()
s = 128
img_metas = [{
'img_shape_for_onnx': torch.Tensor([s, s]),
'scale_factor': 1,
'pad_shape': (s, s, 3),
'img_shape': (s, s, 2)
}]
# The data of retina_head_get_bboxes.pkl contains two parts:
# cls_score(list(Tensor)) and bboxes(list(Tensor)),
# where each torch.Tensor is generated by torch.rand().
# the cls_score's size: (1, 36, 32, 32), (1, 36, 16, 16),
# (1, 36, 8, 8), (1, 36, 4, 4), (1, 36, 2, 2).
# the bboxes's size: (1, 36, 32, 32), (1, 36, 16, 16),
# (1, 36, 8, 8), (1, 36, 4, 4), (1, 36, 2, 2)
retina_head_data = 'retina_head_get_bboxes.pkl'
feats = mmcv.load(osp.join(data_path, retina_head_data))
cls_score = feats[:5]
bboxes = feats[5:]
retina_model.get_bboxes = partial(
retina_model.get_bboxes, img_metas=img_metas, with_nms=False)
ort_validate(retina_model.get_bboxes, (cls_score, bboxes))
def yolo_config():
"""YoloV3 Head Config."""
head_cfg = dict(
anchor_generator=dict(
type='YOLOAnchorGenerator',
base_sizes=[[(116, 90), (156, 198), (373, 326)],
[(30, 61), (62, 45), (59, 119)],
[(10, 13), (16, 30), (33, 23)]],
strides=[32, 16, 8]),
bbox_coder=dict(type='YOLOBBoxCoder'))
test_cfg = mmcv.Config(
dict(
deploy_nms_pre=0,
min_bbox_size=0,
score_thr=0.05,
conf_thr=0.005,
nms=dict(type='nms', iou_threshold=0.45),
max_per_img=100))
model = YOLOV3Head(
num_classes=4,
in_channels=[1, 1, 1],
out_channels=[16, 8, 4],
test_cfg=test_cfg,
**head_cfg)
model.requires_grad_(False)
# yolov3 need eval()
model.cpu().eval()
return model
def test_yolov3_head_forward():
"""Test Yolov3 head forward() in torch and ort env."""
yolo_model = yolo_config()
# Yolov3 head expects a multiple levels of features per image
feats = [
torch.rand(1, 1, 64 // (2**(i + 2)), 64 // (2**(i + 2)))
for i in range(len(yolo_model.in_channels))
]
ort_validate(yolo_model.forward, feats)
def test_yolov3_head_get_bboxes():
"""Test yolov3 head get_bboxes() in torch and ort env."""
yolo_model = yolo_config()
s = 128
img_metas = [{
'img_shape_for_onnx': torch.Tensor([s, s]),
'img_shape': (s, s, 3),
'scale_factor': 1,
'pad_shape': (s, s, 3)
}]
# The data of yolov3_head_get_bboxes.pkl contains
# a list of torch.Tensor, where each torch.Tensor
# is generated by torch.rand and each tensor size is:
# (1, 27, 32, 32), (1, 27, 16, 16), (1, 27, 8, 8).
yolo_head_data = 'yolov3_head_get_bboxes.pkl'
pred_maps = mmcv.load(osp.join(data_path, yolo_head_data))
yolo_model.get_bboxes = partial(
yolo_model.get_bboxes, img_metas=img_metas, with_nms=False)
ort_validate(yolo_model.get_bboxes, pred_maps)
def fcos_config():
"""FCOS Head Config."""
test_cfg = mmcv.Config(
dict(
deploy_nms_pre=0,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100))
model = FCOSHead(num_classes=4, in_channels=1, test_cfg=test_cfg)
model.requires_grad_(False)
return model
def test_fcos_head_forward_single():
"""Test fcos forward single in torch and ort env."""
fcos_model = fcos_config()
feat = torch.rand(1, fcos_model.in_channels, 32, 32)
fcos_model.forward_single = partial(
fcos_model.forward_single,
scale=Scale(1.0).requires_grad_(False),
stride=(4, ))
ort_validate(fcos_model.forward_single, feat)
def test_fcos_head_forward():
"""Test fcos forward in mutil-level feature map."""
fcos_model = fcos_config()
s = 128
feats = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32, 64]
]
ort_validate(fcos_model.forward, feats)
def test_fcos_head_get_bboxes():
"""Test fcos head get_bboxes() in ort."""
fcos_model = fcos_config()
s = 128
img_metas = [{
'img_shape_for_onnx': torch.Tensor([s, s]),
'img_shape': (s, s, 3),
'scale_factor': 1,
'pad_shape': (s, s, 3)
}]
cls_scores = [
torch.rand(1, fcos_model.num_classes, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32, 64]
]
bboxes = [
torch.rand(1, 4, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32, 64]
]
centerness = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32, 64]
]
fcos_model.get_bboxes = partial(
fcos_model.get_bboxes, img_metas=img_metas, with_nms=False)
ort_validate(fcos_model.get_bboxes, (cls_scores, bboxes, centerness))
def fsaf_config():
"""FSAF Head Config."""
cfg = dict(
anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=1,
scales_per_octave=1,
ratios=[1.0],
strides=[8, 16, 32, 64, 128]))
test_cfg = mmcv.Config(
dict(
deploy_nms_pre=0,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100))
model = FSAFHead(num_classes=4, in_channels=1, test_cfg=test_cfg, **cfg)
model.requires_grad_(False)
return model
def test_fsaf_head_forward_single():
"""Test RetinaNet Head forward_single() in torch and onnxruntime env."""
fsaf_model = fsaf_config()
feat = torch.rand(1, fsaf_model.in_channels, 32, 32)
ort_validate(fsaf_model.forward_single, feat)
def test_fsaf_head_forward():
"""Test RetinaNet Head forward in torch and onnxruntime env."""
fsaf_model = fsaf_config()
s = 128
feats = [
torch.rand(1, fsaf_model.in_channels, s // (2**(i + 2)),
s // (2**(i + 2)))
for i in range(len(fsaf_model.anchor_generator.strides))
]
ort_validate(fsaf_model.forward, feats)
def test_fsaf_head_get_bboxes():
"""Test RetinaNet Head get_bboxes in torch and onnxruntime env."""
fsaf_model = fsaf_config()
s = 256
img_metas = [{
'img_shape_for_onnx': torch.Tensor([s, s]),
'scale_factor': 1,
'pad_shape': (s, s, 3),
'img_shape': (s, s, 2)
}]
# The data of fsaf_head_get_bboxes.pkl contains two parts:
# cls_score(list(Tensor)) and bboxes(list(Tensor)),
# where each torch.Tensor is generated by torch.rand().
# the cls_score's size: (1, 4, 64, 64), (1, 4, 32, 32),
# (1, 4, 16, 16), (1, 4, 8, 8), (1, 4, 4, 4).
# the bboxes's size: (1, 4, 64, 64), (1, 4, 32, 32),
# (1, 4, 16, 16), (1, 4, 8, 8), (1, 4, 4, 4).
fsaf_head_data = 'fsaf_head_get_bboxes.pkl'
feats = mmcv.load(osp.join(data_path, fsaf_head_data))
cls_score = feats[:5]
bboxes = feats[5:]
fsaf_model.get_bboxes = partial(
fsaf_model.get_bboxes, img_metas=img_metas, with_nms=False)
ort_validate(fsaf_model.get_bboxes, (cls_score, bboxes))
def ssd_config():
"""SSD Head Config."""
cfg = dict(
anchor_generator=dict(
type='SSDAnchorGenerator',
scale_major=False,
input_size=300,
basesize_ratio_range=(0.15, 0.9),
strides=[8, 16, 32, 64, 100, 300],
ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[0.1, 0.1, 0.2, 0.2]))
test_cfg = mmcv.Config(
dict(
deploy_nms_pre=0,
nms=dict(type='nms', iou_threshold=0.45),
min_bbox_size=0,
score_thr=0.02,
max_per_img=200))
model = SSDHead(
num_classes=4,
in_channels=(4, 8, 4, 2, 2, 2),
test_cfg=test_cfg,
**cfg)
model.requires_grad_(False)
return model
def test_ssd_head_forward():
"""Test SSD Head forward in torch and onnxruntime env."""
ssd_model = ssd_config()
featmap_size = [38, 19, 10, 6, 5, 3, 1]
feats = [
torch.rand(1, ssd_model.in_channels[i], featmap_size[i],
featmap_size[i]) for i in range(len(ssd_model.in_channels))
]
ort_validate(ssd_model.forward, feats)
def test_ssd_head_get_bboxes():
"""Test SSD Head get_bboxes in torch and onnxruntime env."""
ssd_model = ssd_config()
s = 300
img_metas = [{
'img_shape_for_onnx': torch.Tensor([s, s]),
'scale_factor': 1,
'pad_shape': (s, s, 3),
'img_shape': (s, s, 2)
}]
# The data of ssd_head_get_bboxes.pkl contains two parts:
# cls_score(list(Tensor)) and bboxes(list(Tensor)),
# where each torch.Tensor is generated by torch.rand().
# the cls_score's size: (1, 20, 38, 38), (1, 30, 19, 19),
# (1, 30, 10, 10), (1, 30, 5, 5), (1, 20, 3, 3), (1, 20, 1, 1).
# the bboxes's size: (1, 16, 38, 38), (1, 24, 19, 19),
# (1, 24, 10, 10), (1, 24, 5, 5), (1, 16, 3, 3), (1, 16, 1, 1).
ssd_head_data = 'ssd_head_get_bboxes.pkl'
feats = mmcv.load(osp.join(data_path, ssd_head_data))
cls_score = feats[:6]
bboxes = feats[6:]
ssd_model.get_bboxes = partial(
ssd_model.get_bboxes, img_metas=img_metas, with_nms=False)
ort_validate(ssd_model.get_bboxes, (cls_score, bboxes))