|
import argparse |
|
from collections import OrderedDict |
|
|
|
import torch |
|
|
|
|
|
def convert_stem(model_key, model_weight, state_dict, converted_names): |
|
new_key = model_key.replace('stem.conv', 'conv1') |
|
new_key = new_key.replace('stem.bn', 'bn1') |
|
state_dict[new_key] = model_weight |
|
converted_names.add(model_key) |
|
print(f'Convert {model_key} to {new_key}') |
|
|
|
|
|
def convert_head(model_key, model_weight, state_dict, converted_names): |
|
new_key = model_key.replace('head.fc', 'fc') |
|
state_dict[new_key] = model_weight |
|
converted_names.add(model_key) |
|
print(f'Convert {model_key} to {new_key}') |
|
|
|
|
|
def convert_reslayer(model_key, model_weight, state_dict, converted_names): |
|
split_keys = model_key.split('.') |
|
layer, block, module = split_keys[:3] |
|
block_id = int(block[1:]) |
|
layer_name = f'layer{int(layer[1:])}' |
|
block_name = f'{block_id - 1}' |
|
|
|
if block_id == 1 and module == 'bn': |
|
new_key = f'{layer_name}.{block_name}.downsample.1.{split_keys[-1]}' |
|
elif block_id == 1 and module == 'proj': |
|
new_key = f'{layer_name}.{block_name}.downsample.0.{split_keys[-1]}' |
|
elif module == 'f': |
|
if split_keys[3] == 'a_bn': |
|
module_name = 'bn1' |
|
elif split_keys[3] == 'b_bn': |
|
module_name = 'bn2' |
|
elif split_keys[3] == 'c_bn': |
|
module_name = 'bn3' |
|
elif split_keys[3] == 'a': |
|
module_name = 'conv1' |
|
elif split_keys[3] == 'b': |
|
module_name = 'conv2' |
|
elif split_keys[3] == 'c': |
|
module_name = 'conv3' |
|
new_key = f'{layer_name}.{block_name}.{module_name}.{split_keys[-1]}' |
|
else: |
|
raise ValueError(f'Unsupported conversion of key {model_key}') |
|
print(f'Convert {model_key} to {new_key}') |
|
state_dict[new_key] = model_weight |
|
converted_names.add(model_key) |
|
|
|
|
|
def convert(src, dst): |
|
"""Convert keys in pycls pretrained RegNet models to mmdet style.""" |
|
|
|
regnet_model = torch.load(src) |
|
blobs = regnet_model['model_state'] |
|
|
|
state_dict = OrderedDict() |
|
converted_names = set() |
|
for key, weight in blobs.items(): |
|
if 'stem' in key: |
|
convert_stem(key, weight, state_dict, converted_names) |
|
elif 'head' in key: |
|
convert_head(key, weight, state_dict, converted_names) |
|
elif key.startswith('s'): |
|
convert_reslayer(key, weight, state_dict, converted_names) |
|
|
|
|
|
for key in blobs: |
|
if key not in converted_names: |
|
print(f'not converted: {key}') |
|
|
|
checkpoint = dict() |
|
checkpoint['state_dict'] = state_dict |
|
torch.save(checkpoint, dst) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Convert model keys') |
|
parser.add_argument('src', help='src detectron model path') |
|
parser.add_argument('dst', help='save path') |
|
args = parser.parse_args() |
|
convert(args.src, args.dst) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|