|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from .decoders import MaskDecoder |
|
from .encoders import ImageEncoderViT, PromptEncoder |
|
|
|
|
|
class Sam(nn.Module): |
|
mask_threshold: float = 0.0 |
|
image_format: str = 'RGB' |
|
|
|
def __init__( |
|
self, |
|
image_encoder: ImageEncoderViT, |
|
prompt_encoder: PromptEncoder, |
|
mask_decoder: MaskDecoder, |
|
pixel_mean: List[float] = (123.675, 116.28, 103.53), |
|
pixel_std: List[float] = (58.395, 57.12, 57.375) |
|
) -> None: |
|
""" |
|
SAM predicts object masks from an image and input prompts. |
|
|
|
Note: |
|
All forward() operations moved to SAMPredictor. |
|
|
|
Args: |
|
image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings that allow for |
|
efficient mask prediction. |
|
prompt_encoder (PromptEncoder): Encodes various types of input prompts. |
|
mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts. |
|
pixel_mean (list(float)): Mean values for normalizing pixels in the input image. |
|
pixel_std (list(float)): Std values for normalizing pixels in the input image. |
|
""" |
|
super().__init__() |
|
self.image_encoder = image_encoder |
|
self.prompt_encoder = prompt_encoder |
|
self.mask_decoder = mask_decoder |
|
self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(-1, 1, 1), False) |
|
self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(-1, 1, 1), False) |
|
|