|
|
|
|
|
from ultralytics.engine.predictor import BasePredictor |
|
from ultralytics.engine.results import Results |
|
from ultralytics.utils import ops |
|
|
|
|
|
class DetectionPredictor(BasePredictor): |
|
""" |
|
A class extending the BasePredictor class for prediction based on a detection model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils import ASSETS |
|
from ultralytics.models.yolo.detect import DetectionPredictor |
|
|
|
args = dict(model='yolov8n.pt', source=ASSETS) |
|
predictor = DetectionPredictor(overrides=args) |
|
predictor.predict_cli() |
|
``` |
|
""" |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
"""Post-processes predictions and returns a list of Results objects.""" |
|
preds = ops.non_max_suppression(preds, |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
classes=self.args.classes) |
|
|
|
results = [] |
|
is_list = isinstance(orig_imgs, list) |
|
for i, pred in enumerate(preds): |
|
orig_img = orig_imgs[i] if is_list else orig_imgs |
|
if is_list: |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
img_path = self.batch[0][i] |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) |
|
return results |
|
|