|
|
|
|
|
import os |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ultralytics.data import build_dataloader, build_yolo_dataset, converter |
|
from ultralytics.engine.validator import BaseValidator |
|
from ultralytics.utils import LOGGER, ops |
|
from ultralytics.utils.checks import check_requirements |
|
from ultralytics.utils.metrics import ConfusionMatrix, DetMetrics, box_iou |
|
from ultralytics.utils.plotting import output_to_target, plot_images |
|
from ultralytics.utils.torch_utils import de_parallel |
|
|
|
|
|
class DetectionValidator(BaseValidator): |
|
""" |
|
A class extending the BaseValidator class for validation based on a detection model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.detect import DetectionValidator |
|
|
|
args = dict(model='yolov8n.pt', data='coco8.yaml') |
|
validator = DetectionValidator(args=args) |
|
validator() |
|
``` |
|
""" |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): |
|
"""Initialize detection model with necessary variables and settings.""" |
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks) |
|
self.nt_per_class = None |
|
self.is_coco = False |
|
self.class_map = None |
|
self.args.task = 'detect' |
|
self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot) |
|
self.iouv = torch.linspace(0.5, 0.95, 10) |
|
self.niou = self.iouv.numel() |
|
self.lb = [] |
|
|
|
def preprocess(self, batch): |
|
"""Preprocesses batch of images for YOLO training.""" |
|
batch['img'] = batch['img'].to(self.device, non_blocking=True) |
|
batch['img'] = (batch['img'].half() if self.args.half else batch['img'].float()) / 255 |
|
for k in ['batch_idx', 'cls', 'bboxes']: |
|
batch[k] = batch[k].to(self.device) |
|
|
|
if self.args.save_hybrid: |
|
height, width = batch['img'].shape[2:] |
|
nb = len(batch['img']) |
|
bboxes = batch['bboxes'] * torch.tensor((width, height, width, height), device=self.device) |
|
self.lb = [ |
|
torch.cat([batch['cls'][batch['batch_idx'] == i], bboxes[batch['batch_idx'] == i]], dim=-1) |
|
for i in range(nb)] if self.args.save_hybrid else [] |
|
|
|
return batch |
|
|
|
def init_metrics(self, model): |
|
"""Initialize evaluation metrics for YOLO.""" |
|
val = self.data.get(self.args.split, '') |
|
self.is_coco = isinstance(val, str) and 'coco' in val and val.endswith(f'{os.sep}val2017.txt') |
|
self.class_map = converter.coco80_to_coco91_class() if self.is_coco else list(range(1000)) |
|
self.args.save_json |= self.is_coco and not self.training |
|
self.names = model.names |
|
self.nc = len(model.names) |
|
self.metrics.names = self.names |
|
self.metrics.plot = self.args.plots |
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc) |
|
self.seen = 0 |
|
self.jdict = [] |
|
self.stats = [] |
|
|
|
def get_desc(self): |
|
"""Return a formatted string summarizing class metrics of YOLO model.""" |
|
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)') |
|
|
|
def postprocess(self, preds): |
|
"""Apply Non-maximum suppression to prediction outputs.""" |
|
return ops.non_max_suppression(preds, |
|
self.args.conf, |
|
self.args.iou, |
|
labels=self.lb, |
|
multi_label=True, |
|
agnostic=self.args.single_cls, |
|
max_det=self.args.max_det) |
|
|
|
def update_metrics(self, preds, batch): |
|
"""Metrics.""" |
|
for si, pred in enumerate(preds): |
|
idx = batch['batch_idx'] == si |
|
cls = batch['cls'][idx] |
|
bbox = batch['bboxes'][idx] |
|
nl, npr = cls.shape[0], pred.shape[0] |
|
shape = batch['ori_shape'][si] |
|
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) |
|
self.seen += 1 |
|
|
|
if npr == 0: |
|
if nl: |
|
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1))) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) |
|
continue |
|
|
|
|
|
if self.args.single_cls: |
|
pred[:, 5] = 0 |
|
predn = pred.clone() |
|
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape, |
|
ratio_pad=batch['ratio_pad'][si]) |
|
|
|
|
|
if nl: |
|
height, width = batch['img'].shape[2:] |
|
tbox = ops.xywh2xyxy(bbox) * torch.tensor( |
|
(width, height, width, height), device=self.device) |
|
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape, |
|
ratio_pad=batch['ratio_pad'][si]) |
|
labelsn = torch.cat((cls, tbox), 1) |
|
correct_bboxes = self._process_batch(predn, labelsn) |
|
|
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(predn, labelsn) |
|
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) |
|
|
|
|
|
if self.args.save_json: |
|
self.pred_to_json(predn, batch['im_file'][si]) |
|
if self.args.save_txt: |
|
file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt' |
|
self.save_one_txt(predn, self.args.save_conf, shape, file) |
|
|
|
def finalize_metrics(self, *args, **kwargs): |
|
"""Set final values for metrics speed and confusion matrix.""" |
|
self.metrics.speed = self.speed |
|
self.metrics.confusion_matrix = self.confusion_matrix |
|
|
|
def get_stats(self): |
|
"""Returns metrics statistics and results dictionary.""" |
|
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] |
|
|
|
if len(stats) and stats[0].any(): |
|
self.metrics.process(*stats) |
|
|
|
self.nt_per_class = np.bincount(stats[-2].astype(int), minlength=self.nc) |
|
return self.metrics.results_dict |
|
|
|
def print_results(self): |
|
"""Prints training/validation set metrics per class.""" |
|
pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) |
|
LOGGER.info(pf % ('all', self.seen, self.nt_per_class.sum(), *self.metrics.mean_results())) |
|
if self.nt_per_class.sum() == 0: |
|
LOGGER.warning( |
|
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels') |
|
|
|
|
|
if self.args.verbose and not self.training and self.nc > 1 and len(self.stats): |
|
for i, c in enumerate(self.metrics.ap_class_index): |
|
LOGGER.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i))) |
|
|
|
if self.args.plots: |
|
for normalize in True, False: |
|
self.confusion_matrix.plot(save_dir=self.save_dir, |
|
names=self.names.values(), |
|
normalize=normalize, |
|
on_plot=self.on_plot) |
|
|
|
def _process_batch(self, detections, labels): |
|
""" |
|
Return correct prediction matrix. |
|
|
|
Args: |
|
detections (torch.Tensor): Tensor of shape [N, 6] representing detections. |
|
Each detection is of the format: x1, y1, x2, y2, conf, class. |
|
labels (torch.Tensor): Tensor of shape [M, 5] representing labels. |
|
Each label is of the format: class, x1, y1, x2, y2. |
|
|
|
Returns: |
|
(torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels. |
|
""" |
|
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
return self.match_predictions(detections[:, 5], labels[:, 0], iou) |
|
|
|
def build_dataset(self, img_path, mode='val', batch=None): |
|
""" |
|
Build YOLO Dataset. |
|
|
|
Args: |
|
img_path (str): Path to the folder containing images. |
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. |
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None. |
|
""" |
|
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32) |
|
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=gs) |
|
|
|
def get_dataloader(self, dataset_path, batch_size): |
|
"""Construct and return dataloader.""" |
|
dataset = self.build_dataset(dataset_path, batch=batch_size, mode='val') |
|
return build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1) |
|
|
|
def plot_val_samples(self, batch, ni): |
|
"""Plot validation image samples.""" |
|
plot_images(batch['img'], |
|
batch['batch_idx'], |
|
batch['cls'].squeeze(-1), |
|
batch['bboxes'], |
|
paths=batch['im_file'], |
|
fname=self.save_dir / f'val_batch{ni}_labels.jpg', |
|
names=self.names, |
|
on_plot=self.on_plot) |
|
|
|
def plot_predictions(self, batch, preds, ni): |
|
"""Plots predicted bounding boxes on input images and saves the result.""" |
|
plot_images(batch['img'], |
|
*output_to_target(preds, max_det=self.args.max_det), |
|
paths=batch['im_file'], |
|
fname=self.save_dir / f'val_batch{ni}_pred.jpg', |
|
names=self.names, |
|
on_plot=self.on_plot) |
|
|
|
def save_one_txt(self, predn, save_conf, shape, file): |
|
"""Save YOLO detections to a txt file in normalized coordinates in a specific format.""" |
|
gn = torch.tensor(shape)[[1, 0, 1, 0]] |
|
for *xyxy, conf, cls in predn.tolist(): |
|
xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() |
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) |
|
with open(file, 'a') as f: |
|
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
def pred_to_json(self, predn, filename): |
|
"""Serialize YOLO predictions to COCO json format.""" |
|
stem = Path(filename).stem |
|
image_id = int(stem) if stem.isnumeric() else stem |
|
box = ops.xyxy2xywh(predn[:, :4]) |
|
box[:, :2] -= box[:, 2:] / 2 |
|
for p, b in zip(predn.tolist(), box.tolist()): |
|
self.jdict.append({ |
|
'image_id': image_id, |
|
'category_id': self.class_map[int(p[5])], |
|
'bbox': [round(x, 3) for x in b], |
|
'score': round(p[4], 5)}) |
|
|
|
def eval_json(self, stats): |
|
"""Evaluates YOLO output in JSON format and returns performance statistics.""" |
|
if self.args.save_json and self.is_coco and len(self.jdict): |
|
anno_json = self.data['path'] / 'annotations/instances_val2017.json' |
|
pred_json = self.save_dir / 'predictions.json' |
|
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') |
|
try: |
|
check_requirements('pycocotools>=2.0.6') |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
for x in anno_json, pred_json: |
|
assert x.is_file(), f'{x} file not found' |
|
anno = COCO(str(anno_json)) |
|
pred = anno.loadRes(str(pred_json)) |
|
eval = COCOeval(anno, pred, 'bbox') |
|
if self.is_coco: |
|
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] |
|
eval.evaluate() |
|
eval.accumulate() |
|
eval.summarize() |
|
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] |
|
except Exception as e: |
|
LOGGER.warning(f'pycocotools unable to run: {e}') |
|
return stats |
|
|