tomsoderlund's picture
Gradio examples
faec829
raw
history blame
950 Bytes
import gradio
from transformers import pipeline
def process_swedish_text(text):
# Models from https://huggingface.co/models
# https://huggingface.co/KBLab/bert-base-swedish-cased-ner
nlp = pipeline('ner', model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner')
# Run NER
nlp_results = nlp(text)
print('nlp_results:', nlp_results)
# Fix TypeError("'numpy.float32' object is not iterable")
nlp_results_adjusted = map(lambda entity: entity | { 'score': float(entity['score']) }, nlp_results)
print('nlp_results_adjusted:', nlp_results_adjusted)
# Return values
return {'entities': list(nlp_results_adjusted)}
gradio_interface = gradio.Interface(fn=process_swedish_text, inputs="text", outputs="json", examples=[["Jag heter Tom och bor i Stockholm."], ["Groens malmgård är en av Stockholms malmgårdar, belägen vid Malmgårdsvägen 53 på Södermalm i Stockholm."]])
gradio_interface.launch()