import gradio as gr # Models from https://huggingface.co/models # https://huggingface.co/KBLab/bert-base-swedish-cased-ner ml_model = 'KBLab/bert-base-swedish-cased-ner' ner_pipeline = pipeline(model=ml_model, task='ner') def process_swedish_text(text): pipeline_results = ner_pipeline(text) print('NER results:', pipeline_results) pipeline_results_adjusted = map(lambda entity: entity | { 'score': float(entity['score']) }, pipeline_results) print(pipeline_results_adjusted) return pipeline_results_adjusted gradio_interface = gr.Interface(fn=process_swedish_text, inputs="text", outputs="JSON") gradio_interface.launch()