Uploading our food not food classifier demo from a notebook!
Browse files
app.py
CHANGED
@@ -9,8 +9,16 @@ from transformers import pipeline
|
|
9 |
food_not_food_classifier = pipeline(task="text-classification",
|
10 |
model="tonicanada/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
|
11 |
top_k=1,
|
|
|
12 |
batch_size=32)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# 3. Create a Gradio interface
|
15 |
description = """
|
16 |
A text classifier to determine if a sentence is about food or not food.
|
@@ -21,9 +29,9 @@ See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/noteb
|
|
21 |
"""
|
22 |
|
23 |
demo = gr.Interface(
|
24 |
-
fn =
|
25 |
inputs = "text",
|
26 |
-
outputs=gr.Label(num_top_classes=2),
|
27 |
title="馃崡馃毇馃 Food or Not Food Text Classifier",
|
28 |
description=description,
|
29 |
examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."],
|
|
|
9 |
food_not_food_classifier = pipeline(task="text-classification",
|
10 |
model="tonicanada/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
|
11 |
top_k=1,
|
12 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
13 |
batch_size=32)
|
14 |
|
15 |
+
def classify_text(text):
|
16 |
+
# Usa el clasificador
|
17 |
+
result = food_not_food_classifier(text)
|
18 |
+
# Devuelve la etiqueta y la puntuaci贸n
|
19 |
+
return result[0]['label'], result[0]['score']
|
20 |
+
|
21 |
+
|
22 |
# 3. Create a Gradio interface
|
23 |
description = """
|
24 |
A text classifier to determine if a sentence is about food or not food.
|
|
|
29 |
"""
|
30 |
|
31 |
demo = gr.Interface(
|
32 |
+
fn = classify_text,
|
33 |
inputs = "text",
|
34 |
+
outputs=[gr.Label(num_top_classes=2), gr.Textbox()],
|
35 |
title="馃崡馃毇馃 Food or Not Food Text Classifier",
|
36 |
description=description,
|
37 |
examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."],
|