diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..e059548780499f891f79aed714293303b51ca123
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,5 @@
+venv/
+/weights/*
+weight/genconvit_ed_inference.pth
+weight/genconvit_vae_inference.pth
+```
diff --git a/Dockerfile b/Dockerfile
new file mode 100644
index 0000000000000000000000000000000000000000..96d20e6d957b8570830168dfa4c43f23a9aec515
--- /dev/null
+++ b/Dockerfile
@@ -0,0 +1,22 @@
+FROM python:3.10-slim
+
+WORKDIR /app
+
+# Install system dependencies (simplified without dlib requirements)
+RUN apt-get update && apt-get install -y \
+ build-essential \
+ ffmpeg \
+ libgl1-mesa-glx \
+ && rm -rf /var/lib/apt/lists/*
+
+# Copy requirements first for better caching
+COPY requirements.txt .
+
+# Install Python dependencies
+RUN pip install --no-cache-dir -r requirements.txt
+
+# Copy the rest of the application
+COPY . .
+
+# Command to run the application
+CMD ["streamlit", "run", "app.py", "--server.port=7860", "--server.address=0.0.0.0"]
\ No newline at end of file
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..f288702d2fa16d3cdf0035b15a9fcbc552cd88e7
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,674 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+
+ Copyright (C)
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ Copyright (C)
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+.
diff --git a/__init__.py b/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..199d0f793f236bdacbe89e09cfedbd80168c3cee
--- /dev/null
+++ b/app.py
@@ -0,0 +1,502 @@
+import streamlit as st
+import os
+import tempfile
+import shutil
+import torch
+from huggingface_hub import hf_hub_download
+import cv2
+from PIL import Image
+import numpy as np
+import time
+import sys
+import json
+import graphviz
+import pandas as pd
+from datetime import datetime
+
+# Add a custom path for model imports
+if "model" not in sys.path:
+ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
+
+# Import your prediction functions
+from model.pred_func import (
+ load_genconvit,
+ df_face,
+ pred_vid,
+ real_or_fake,
+ set_result,
+ store_result
+)
+from model.config import load_config
+
+# Set page config
+st.set_page_config(
+ page_title="Deepfake Detection with GenConViT",
+ page_icon="🎭",
+ layout="wide"
+)
+
+# Initialize logs in session state
+if 'logs' not in st.session_state:
+ st.session_state.logs = []
+
+def add_log(message):
+ """Add a log entry with timestamp"""
+ timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
+ st.session_state.logs.append(f"[{timestamp}] {message}")
+
+@st.cache_resource
+def load_model_from_huggingface(model_type="both"):
+ """Load the model weights from Hugging Face Hub based on selection"""
+ config = load_config()
+ add_log("Starting model weights download from Hugging Face Hub")
+
+ os.makedirs("weight", exist_ok=True)
+
+ with st.spinner("Downloading model weights from Hugging Face Hub..."):
+ ed_path = hf_hub_download(
+ repo_id="Deressa/GenConViT",
+ filename="genconvit_ed_inference.pth",
+ )
+ vae_path = hf_hub_download(
+ repo_id="Deressa/GenConViT",
+ filename="genconvit_vae_inference.pth",
+ )
+
+ shutil.copy(ed_path, "weight/genconvit_ed_inference.pth")
+ shutil.copy(vae_path, "weight/genconvit_vae_inference.pth")
+ add_log("Model weights downloaded successfully")
+
+ with st.spinner("Loading model..."):
+ if model_type == "ed":
+ model = load_genconvit(
+ config,
+ "genconvit",
+ "genconvit_ed_inference",
+ None,
+ fp16=False
+ )
+ add_log("Loaded ED Model only")
+ elif model_type == "vae":
+ model = load_genconvit(
+ config,
+ "genconvit",
+ None,
+ "genconvit_vae_inference",
+ fp16=False
+ )
+ add_log("Loaded VAE Model only")
+ else:
+ model = load_genconvit(
+ config,
+ "genconvit",
+ "genconvit_ed_inference",
+ "genconvit_vae_inference",
+ fp16=False
+ )
+ add_log("Loaded both ED and VAE Models")
+
+ return model, config
+
+def is_video(file):
+ """Check if a file is a valid video file"""
+ try:
+ cap = cv2.VideoCapture(file)
+ if not cap.isOpened():
+ return False
+ ret, frame = cap.read()
+ cap.release()
+ return ret
+ except:
+ return False
+
+def create_flowchart(stage=None):
+ """Creates a flowchart of the deepfake detection pipeline."""
+ graph = graphviz.Digraph('pipeline', graph_attr={'rankdir': 'LR', 'size': '10,15'})
+
+ stages = {
+ "upload": {"label": "Upload\nVideo", "fillcolor": "#ddeedd", "color": "#336633", "done": False},
+ "frames": {"label": "Extract\nFrames", "fillcolor": "#eef2ff", "color": "#336699", "done": False},
+ "preprocessing": {"label": "Preprocess\nFrames", "fillcolor": "#fff0ee", "color": "#996633", "done": False},
+ "model": {"label": "GenConViT\nModel", "fillcolor": "#f0e68c", "color": "#a67d3d", "done": False},
+ "results": {"label": "Results", "fillcolor": "#c0c0c0", "color": "#555555", "done": False},
+ }
+
+ if stage:
+ for key in stages:
+ if key == stage:
+ stages[key]["fillcolor"] = "#ffcc00"
+ stages[key]["color"] = "#b8860b"
+ break
+ else:
+ stages[key]["fillcolor"] = "#90ee90"
+ stages[key]["color"] = "#006400"
+ stages[key]["done"] = True
+
+ for key, details in stages.items():
+ graph.node(key, details["label"], fillcolor=details["fillcolor"], color=details["color"], shape='box', style='filled,rounded')
+
+ graph.edge("upload", "frames")
+ graph.edge("frames", "preprocessing")
+ graph.edge("preprocessing", "model")
+ graph.edge("model", "results")
+
+ return graph
+
+def extract_faces_from_frames(video_path, num_frames=15):
+ """Extract faces from video frames and display some of them"""
+ cap = cv2.VideoCapture(video_path)
+
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
+ frames_to_extract = min(num_frames, total_frames)
+ interval = max(1, total_frames // frames_to_extract)
+
+ face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
+ face_frames = []
+
+ for i in range(0, total_frames, interval):
+ if len(face_frames) >= frames_to_extract:
+ break
+
+ cap.set(cv2.CAP_PROP_POS_FRAMES, i)
+ ret, frame = cap.read()
+ if not ret:
+ continue
+
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
+ faces = face_cascade.detectMultiScale(gray, 1.1, 4)
+
+ if len(faces) > 0:
+ face_frames.append(frame)
+
+ cap.release()
+ return face_frames[:frames_to_extract]
+
+def process_video(video_file, model, config, num_frames=15, progress_bar=None, flowchart_placeholder=None):
+ """Process a video file and return prediction"""
+ with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
+ tmp_file.write(video_file.read())
+ tmp_file_path = tmp_file.name
+
+ total_steps = 4
+ progress_step = 0
+
+ try:
+ add_log(f"Processing video: {video_file.name}")
+ if flowchart_placeholder:
+ flowchart_placeholder.graphviz_chart(create_flowchart("frames"))
+
+ progress_step += 1
+ if progress_bar:
+ progress_bar.progress(progress_step / total_steps, "Extracting faces...")
+
+ with st.spinner("Extracting faces from video frames..."):
+ df = df_face(tmp_file_path, num_frames, "genconvit")
+ add_log(f"Extracted {len(df)} face frames")
+
+ if len(df) >= 1:
+ if flowchart_placeholder:
+ flowchart_placeholder.graphviz_chart(create_flowchart("preprocessing"))
+
+ progress_step += 1
+ if progress_bar:
+ progress_bar.progress(progress_step / total_steps, "Preprocessing frames...")
+ time.sleep(0.5)
+
+ if flowchart_placeholder:
+ flowchart_placeholder.graphviz_chart(create_flowchart("model"))
+
+ progress_step += 1
+ if progress_bar:
+ progress_bar.progress(progress_step / total_steps, "Analyzing with GenConViT...")
+
+ with st.spinner("Analyzing video..."):
+ y, y_val = pred_vid(df, model)
+ prediction = real_or_fake(y)
+ confidence = float(y_val)
+ add_log(f"Prediction: {prediction} with confidence {confidence:.4f}")
+ else:
+ prediction = "Unable to detect faces"
+ confidence = 0.0
+ add_log("No faces detected in video")
+
+ if flowchart_placeholder:
+ flowchart_placeholder.graphviz_chart(create_flowchart("results"))
+ progress_step += 1
+ if progress_bar:
+ progress_bar.progress(progress_step / total_steps, "Results ready!")
+
+ os.unlink(tmp_file_path)
+ add_log("Temporary video file removed")
+ return prediction, confidence, df
+
+ except Exception as e:
+ if os.path.exists(tmp_file_path):
+ os.unlink(tmp_file_path)
+ add_log(f"Error processing video: {str(e)}")
+ st.error(f"Error processing video: {str(e)}")
+ return "Error", 0.0, None
+
+def main():
+ st.sidebar.title("GenConViT Deepfake Detector")
+ page = st.sidebar.radio("Navigation", ["Home", "About", "How It Works"])
+
+ model_type = st.sidebar.selectbox(
+ "Select Model",
+ options=["Both (ED + VAE)", "ED Model Only", "VAE Model Only"],
+ index=0,
+ help="Choose which model components to use for detection."
+ )
+
+ model_type_map = {
+ "Both (ED + VAE)": "both",
+ "ED Model Only": "ed",
+ "VAE Model Only": "vae"
+ }
+ selected_model_type = model_type_map[model_type]
+
+ if page == "Home":
+ st.title("🎭 Deepfake Detection with GenConViT")
+ st.markdown("""
+ Upload a video to detect if it's a real or fake (manipulated) facial video.
+ This app uses the GenConViT model to analyze facial videos for signs of manipulation.
+ """)
+
+ if 'model_loaded' not in st.session_state:
+ st.session_state.model_loaded = False
+
+ if not st.session_state.model_loaded:
+ try:
+ with st.spinner("⏳ Loading AI model..."):
+ model, config = load_model_from_huggingface(model_type=selected_model_type)
+ st.success("✅ Model loaded successfully")
+ st.session_state.model = model
+ st.session_state.config = config
+ st.session_state.model_loaded = True
+ st.session_state.model_type = model_type
+ except Exception as e:
+ st.error(f"Failed to load model: {str(e)}")
+ st.stop()
+ else:
+ model = st.session_state.model
+ config = st.session_state.config
+
+ uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "avi", "mov", "wmv"])
+
+ col1, col2 = st.columns([1, 1])
+ with col1:
+ num_frames = st.slider("Number of frames to process", min_value=5, max_value=30, value=15)
+
+
+ progress_bar_placeholder = st.empty()
+ flowchart_placeholder = st.empty()
+
+ result_container = st.container()
+ details_container = st.container()
+
+ if uploaded_file is not None:
+ flowchart_placeholder.graphviz_chart(create_flowchart("upload"))
+ progress_bar = progress_bar_placeholder.progress(0, "Starting analysis...")
+ st.video(uploaded_file)
+
+ prediction, confidence, tensor_data = process_video(
+ uploaded_file, model, config, num_frames, progress_bar, flowchart_placeholder
+ )
+
+ with result_container:
+ st.subheader("Analysis Results")
+ col1, col2 = st.columns([1, 1])
+
+ with col1:
+ if prediction == "FAKE":
+ st.error("⚠️ DEEPFAKE DETECTED")
+ st.metric("Confidence", f"{confidence:.2f}")
+ st.markdown("This video appears to be manipulated.")
+ elif prediction == "REAL":
+ st.success("✅ AUTHENTIC VIDEO")
+ st.metric("Confidence", f"{(1 - confidence):.2f}") # Show "real" confidence
+ st.markdown("This video appears to be authentic.")
+ else:
+ st.warning(f"⚠️ {prediction}")
+
+ with col2:
+ if prediction != "Unable to detect faces" and prediction != "Error":
+ fake_percentage = confidence * 100
+ real_percentage = (1 - confidence) * 100
+ chart_data = pd.DataFrame({
+ "Category": ["Real", "Fake"],
+ "Percentage": [real_percentage, fake_percentage]
+ })
+ st.bar_chart(chart_data.set_index("Category"))
+
+ # Add radar chart for more detailed visualization
+ if prediction != "Unable to detect faces" and prediction != "Error":
+ st.subheader("Confidence Analysis")
+
+ # Create radar chart data
+ radar_data = {
+ 'Metrics': ['Authenticity', 'Manipulation', 'Confidence', 'Certainty', 'Reliability'],
+ 'Real': [real_percentage, 100-fake_percentage, real_percentage,
+ real_percentage*0.9, real_percentage*1.1],
+ 'Fake': [fake_percentage, 100-real_percentage, fake_percentage,
+ fake_percentage*0.9, fake_percentage*1.1]
+ }
+
+ radar_df = pd.DataFrame(radar_data)
+
+ # Plot radar chart using plotly
+ import plotly.graph_objects as go
+
+ categories = radar_df['Metrics'].tolist()
+ fig = go.Figure()
+
+ fig.add_trace(go.Scatterpolar(
+ r=radar_df['Real'].tolist(),
+ theta=categories,
+ fill='toself',
+ name='Real'
+ ))
+
+ fig.add_trace(go.Scatterpolar(
+ r=radar_df['Fake'].tolist(),
+ theta=categories,
+ fill='toself',
+ name='Fake'
+ ))
+
+ fig.update_layout(
+ polar=dict(
+ radialaxis=dict(
+ visible=True,
+ range=[0, 100]
+ )
+ ),
+ showlegend=True
+ )
+
+ st.plotly_chart(fig, use_container_width=True)
+
+ with details_container:
+ st.subheader("Detailed Analysis")
+ current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
+ details = {
+ "Metric": ["Video", "Model Used", "Frames Analyzed", "Result", "Confidence", "Date/Time"],
+ "Value": [
+ uploaded_file.name,
+ model_type,
+ str(num_frames), # Convert to string to avoid PyArrow type issues
+ prediction,
+ f"{confidence:.4f}",
+ current_time
+ ]
+ }
+
+ df_details = pd.DataFrame(details)
+ st.dataframe(df_details, use_container_width=True)
+
+ csv = df_details.to_csv(index=False)
+ st.download_button(
+ label="📊 Export Results as CSV",
+ data=csv,
+ file_name=f"deepfake_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
+ mime="text/csv",
+ )
+
+ # Logs Section
+ with st.expander("Processing Logs", expanded=False):
+ st.subheader("Logs")
+ if st.session_state.logs:
+ log_text = "\n".join(st.session_state.logs)
+ st.text_area("Log Output", value=log_text, height=200, disabled=True)
+ else:
+ st.info("No logs available yet.")
+ if st.button("Clear Logs"):
+ st.session_state.logs = []
+ st.rerun()
+
+ elif page == "About":
+ st.title("About GenConViT")
+ st.markdown("""
+ ## What is GenConViT?
+
+ GenConViT is a deepfake detection model that combines convolutional neural networks with vision transformers
+ to detect manipulated facial videos with high accuracy.
+
+ ### Key Features
+
+ - **Robust Detection**: Trained on multiple deepfake datasets
+ - **High Accuracy**: Achieves state-of-the-art performance
+ - **Real-time Analysis**: Fast processing for quick results
+
+ ### Capabilities
+
+ The model can detect various types of facial manipulations including:
+ - Face swaps
+ - Face reenactment
+ - Face synthesis
+ - Attribute manipulation
+
+ ### Model Architecture
+ """)
+
+ st.image("pipeline_architecture.png",
+ caption="GenConViT Architecture Diagram")
+
+ st.markdown("""
+ ### Citations
+
+ If you use GenConViT in your research or applications, please cite:
+
+ ```
+ @article{deressa2023genconvit,
+ title={GenConViT: Generalized Convolutional Vision Transformer for Deepfake Detection},
+ author={Deressa, Safal and Colleagues},
+ journal={arXiv preprint},
+ year={2023}
+ }
+ ```
+
+ ### Source Code
+
+ The model is available on GitHub: [https://github.com/Deressa/GenConViT](https://github.com/Deressa/GenConViT)
+ """)
+
+ elif page == "How It Works":
+ st.title("How GenConViT Works")
+ st.markdown("""
+ ## Deepfake Detection Pipeline
+
+ GenConViT processes videos through a series of steps to determine if they're real or fake:
+ """)
+ st.graphviz_chart(create_flowchart())
+ st.markdown("""
+ ### 1. Video Upload
+ The process begins when you upload a video file to be analyzed.
+
+ ### 2. Frame Extraction
+ The system extracts key frames from the video for analysis.
+
+ ### 3. Preprocessing
+ Frames are preprocessed to detect and crop faces, normalize lighting, and prepare for analysis.
+
+ ### 4. Model Analysis
+ The GenConViT model analyzes the facial features and movement patterns to detect signs of manipulation.
+
+ ### 5. Results
+ The system provides a prediction along with a confidence score, indicating whether the video is real or fake.
+
+ ## Technical Details
+
+ GenConViT combines the strengths of:
+ - Convolutional Neural Networks (CNN) for local feature extraction
+ - Vision Transformers (ViT) for global context understanding
+
+ This hybrid approach enables better detection across different types of deepfakes and manipulation techniques.
+ """)
+
+st.sidebar.markdown("---")
+st.sidebar.markdown("© 2025 GenConViT")
+st.sidebar.markdown("Created by Safal Immanuel Sabari")
+
+if __name__ == "__main__":
+ main()
\ No newline at end of file
diff --git a/dataset/__init__.py b/dataset/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/dataset/__pycache__/__init__.cpython-311.pyc b/dataset/__pycache__/__init__.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..03f80d38d34f893ea1d801ec79da72f6c8a8dfc9
Binary files /dev/null and b/dataset/__pycache__/__init__.cpython-311.pyc differ
diff --git a/dataset/__pycache__/loader.cpython-311.pyc b/dataset/__pycache__/loader.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..effd749200c86dfe47de2e6db8b77c1956423dde
Binary files /dev/null and b/dataset/__pycache__/loader.cpython-311.pyc differ
diff --git a/dataset/loader.py b/dataset/loader.py
new file mode 100644
index 0000000000000000000000000000000000000000..418b64d24d52e3deed1b21b84ef796da0d72f2b9
--- /dev/null
+++ b/dataset/loader.py
@@ -0,0 +1,141 @@
+import os
+import torch
+from torchvision import transforms, datasets
+from albumentations import (
+ HorizontalFlip,
+ VerticalFlip,
+ ShiftScaleRotate,
+ CLAHE,
+ RandomRotate90,
+ Transpose,
+ ShiftScaleRotate,
+ HueSaturationValue,
+ GaussNoise,
+ Sharpen,
+ Emboss,
+ RandomBrightnessContrast,
+ OneOf,
+ Compose,
+)
+import numpy as np
+from PIL import Image
+
+
+def strong_aug(p=0.5):
+ return Compose(
+ [
+ RandomRotate90(p=0.2),
+ Transpose(p=0.2),
+ HorizontalFlip(p=0.5),
+ VerticalFlip(p=0.5),
+ OneOf(
+ [
+ GaussNoise(),
+ ],
+ p=0.2,
+ ),
+ ShiftScaleRotate(p=0.2),
+ OneOf(
+ [
+ CLAHE(clip_limit=2),
+ Sharpen(),
+ Emboss(),
+ RandomBrightnessContrast(),
+ ],
+ p=0.2,
+ ),
+ HueSaturationValue(p=0.2),
+ ],
+ p=p,
+ )
+
+
+def augment(aug, image):
+ return aug(image=image)["image"]
+
+
+class Aug(object):
+ def __call__(self, img):
+ aug = strong_aug(p=0.9)
+ return Image.fromarray(augment(aug, np.array(img)))
+
+
+def normalize_data():
+ mean = [0.485, 0.456, 0.406]
+ std = [0.229, 0.224, 0.225]
+
+ return {
+ "train": transforms.Compose(
+ [Aug(), transforms.ToTensor(), transforms.Normalize(mean, std)]
+ ),
+ "valid": transforms.Compose(
+ [transforms.ToTensor(), transforms.Normalize(mean, std)]
+ ),
+ "test": transforms.Compose(
+ [transforms.ToTensor(), transforms.Normalize(mean, std)]
+ ),
+ "vid": transforms.Compose([transforms.Normalize(mean, std)]),
+ }
+
+
+def load_data(data_dir="sample/", batch_size=4):
+ data_dir = data_dir
+ image_datasets = {
+ x: datasets.ImageFolder(os.path.join(data_dir, x), normalize_data()[x])
+ for x in ["train", "valid", "test"]
+ }
+
+ # dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size,
+ # shuffle=True, num_workers=0, pin_memory=True)
+ # for x in ['train', 'validation', 'test']}
+
+ dataset_sizes = {x: len(image_datasets[x]) for x in ["train", "valid", "test"]}
+
+ train_dataloaders = torch.utils.data.DataLoader(
+ image_datasets["train"],
+ batch_size,
+ shuffle=True,
+ num_workers=0,
+ pin_memory=True,
+ )
+ validation_dataloaders = torch.utils.data.DataLoader(
+ image_datasets["valid"],
+ batch_size,
+ shuffle=False,
+ num_workers=0,
+ pin_memory=True,
+ )
+ test_dataloaders = torch.utils.data.DataLoader(
+ image_datasets["test"],
+ batch_size,
+ shuffle=False,
+ num_workers=0,
+ pin_memory=True,
+ )
+
+ dataloaders = {
+ "train": train_dataloaders,
+ "validation": validation_dataloaders,
+ "test": test_dataloaders,
+ }
+
+ return dataloaders, dataset_sizes
+
+
+def load_checkpoint(model, optimizer, filename=None):
+ start_epoch = 0
+ log_loss = 0
+ if os.path.isfile(filename):
+ print("=> loading checkpoint '{}'".format(filename))
+ checkpoint = torch.load(filename)
+ start_epoch = checkpoint["epoch"]
+ model.load_state_dict(checkpoint["state_dict"])
+ optimizer.load_state_dict(checkpoint["optimizer"])
+ log_loss = checkpoint["min_loss"]
+ print(
+ "=> loaded checkpoint '{}' (epoch {})".format(filename, checkpoint["epoch"])
+ )
+ else:
+ print("=> no checkpoint found at '{}'".format(filename))
+
+ return model, optimizer, start_epoch, log_loss
diff --git a/img/genconvit.png b/img/genconvit.png
new file mode 100644
index 0000000000000000000000000000000000000000..d5d506515fd27da3f07976b9dc2f5635f97e174b
Binary files /dev/null and b/img/genconvit.png differ
diff --git a/json_file/celeb_test.json b/json_file/celeb_test.json
new file mode 100644
index 0000000000000000000000000000000000000000..984671149087da3d626dc2ace9de5d8f230873e1
--- /dev/null
+++ b/json_file/celeb_test.json
@@ -0,0 +1 @@
+["YouTube-real/00170.mp4", "YouTube-real/00208.mp4", "YouTube-real/00063.mp4", "YouTube-real/00024.mp4", "YouTube-real/00021.mp4", "YouTube-real/00036.mp4", "YouTube-real/00202.mp4", "YouTube-real/00236.mp4", "YouTube-real/00197.mp4", "YouTube-real/00133.mp4", "YouTube-real/00213.mp4", "YouTube-real/00011.mp4", "YouTube-real/00095.mp4", "YouTube-real/00138.mp4", "YouTube-real/00106.mp4", "YouTube-real/00194.mp4", "YouTube-real/00092.mp4", "YouTube-real/00227.mp4", "YouTube-real/00244.mp4", "YouTube-real/00119.mp4", "YouTube-real/00082.mp4", "YouTube-real/00188.mp4", "YouTube-real/00076.mp4", "YouTube-real/00047.mp4", "YouTube-real/00168.mp4", "YouTube-real/00207.mp4", "YouTube-real/00193.mp4", "YouTube-real/00061.mp4", "YouTube-real/00023.mp4", "YouTube-real/00048.mp4", "YouTube-real/00250.mp4", "YouTube-real/00251.mp4", "YouTube-real/00252.mp4", "YouTube-real/00253.mp4", "YouTube-real/00254.mp4", "YouTube-real/00255.mp4", "YouTube-real/00256.mp4", "YouTube-real/00257.mp4", "YouTube-real/00258.mp4", "YouTube-real/00259.mp4", "YouTube-real/00260.mp4", "YouTube-real/00261.mp4", "YouTube-real/00262.mp4", "YouTube-real/00263.mp4", "YouTube-real/00264.mp4", "YouTube-real/00265.mp4", "YouTube-real/00266.mp4", "YouTube-real/00267.mp4", "YouTube-real/00268.mp4", "YouTube-real/00269.mp4", "YouTube-real/00270.mp4", "YouTube-real/00271.mp4", "YouTube-real/00272.mp4", "YouTube-real/00273.mp4", "YouTube-real/00274.mp4", "YouTube-real/00275.mp4", "YouTube-real/00276.mp4", "YouTube-real/00277.mp4", "YouTube-real/00278.mp4", "YouTube-real/00279.mp4", "YouTube-real/00280.mp4", "YouTube-real/00281.mp4", "YouTube-real/00282.mp4", "YouTube-real/00283.mp4", "YouTube-real/00284.mp4", "YouTube-real/00285.mp4", "YouTube-real/00286.mp4", "YouTube-real/00287.mp4", "YouTube-real/00288.mp4", "YouTube-real/00289.mp4", "Celeb-real/id1_0007.mp4", "Celeb-real/id2_0008.mp4", "Celeb-real/id3_0001.mp4", "Celeb-real/id6_0005.mp4", "Celeb-real/id9_0000.mp4", "Celeb-real/id11_0008.mp4", "Celeb-real/id16_0011.mp4", "Celeb-real/id17_0000.mp4", "Celeb-real/id35_0008.mp4", "Celeb-real/id39_0005.mp4", "Celeb-real/id48_0000.mp4", "Celeb-real/id32_0008.mp4", "Celeb-real/id56_0009.mp4", "Celeb-real/id54_0007.mp4", "Celeb-real/id37_0005.mp4", "Celeb-real/id29_0008.mp4", "Celeb-real/id43_0006.mp4", "Celeb-real/id1_0006.mp4", "Celeb-real/id51_0001.mp4", "Celeb-real/id31_0007.mp4", "Celeb-real/id2_0003.mp4", "Celeb-real/id21_0009.mp4", "Celeb-real/id50_0003.mp4", "Celeb-real/id21_0006.mp4", "Celeb-real/id44_0003.mp4", "Celeb-real/id36_0006.mp4", "Celeb-real/id36_0008.mp4", "Celeb-real/id1_0008.mp4", "Celeb-real/id45_0003.mp4", "Celeb-real/id48_0003.mp4", "Celeb-real/id23_0001.mp4", "Celeb-real/id16_0010.mp4", "Celeb-real/id31_0004.mp4", "Celeb-real/id35_0000.mp4", "Celeb-real/id58_0002.mp4", "Celeb-real/id30_0007.mp4", "Celeb-real/id12_0005.mp4", "Celeb-real/id56_0002.mp4", "Celeb-real/id33_0005.mp4", "Celeb-real/id29_0009.mp4", "Celeb-real/id13_0013.mp4", "Celeb-real/id28_0009.mp4", "Celeb-real/id36_0000.mp4", "Celeb-real/id24_0009.mp4", "Celeb-real/id39_0004.mp4", "Celeb-real/id27_0008.mp4", "Celeb-real/id11_0006.mp4", "Celeb-real/id19_0007.mp4", "Celeb-real/id37_0009.mp4", "Celeb-real/id3_0008.mp4", "Celeb-real/id46_0000.mp4", "Celeb-real/id33_0008.mp4", "Celeb-real/id8_0000.mp4", "Celeb-real/id16_0007.mp4", "Celeb-real/id1_0001.mp4", "Celeb-real/id32_0002.mp4", "Celeb-real/id19_0005.mp4", "Celeb-real/id27_0009.mp4", "Celeb-real/id2_0001.mp4", "Celeb-real/id13_0011.mp4", "Celeb-real/id49_0004.mp4", "Celeb-real/id57_0007.mp4", "Celeb-real/id26_0008.mp4", "Celeb-real/id2_0004.mp4", "Celeb-real/id36_0001.mp4", "Celeb-real/id0_0001.mp4", "Celeb-real/id10_0007.mp4", "Celeb-real/id17_0002.mp4", "Celeb-real/id4_0004.mp4", "Celeb-real/id36_0002.mp4", "Celeb-real/id53_0003.mp4", "Celeb-real/id25_0010.mp4", "Celeb-real/id51_0006.mp4", "Celeb-real/id22_0000.mp4", "Celeb-real/id10_0001.mp4", "Celeb-real/id6_0002.mp4", "Celeb-real/id12_0000.mp4", "Celeb-real/id35_0003.mp4", "Celeb-real/id3_0002.mp4", "Celeb-real/id31_0003.mp4", "Celeb-real/id52_0002.mp4", "Celeb-real/id2_0002.mp4", "Celeb-real/id44_0001.mp4", "Celeb-real/id8_0009.mp4", "Celeb-real/id33_0002.mp4", "Celeb-real/id50_0000.mp4", "Celeb-real/id40_0003.mp4", "Celeb-real/id7_0006.mp4", "Celeb-real/id53_0007.mp4", "Celeb-real/id43_0002.mp4", "Celeb-real/id56_0000.mp4", "Celeb-real/id13_0004.mp4", "Celeb-real/id43_0001.mp4", "Celeb-real/id20_0008.mp4", "Celeb-real/id28_0004.mp4", "Celeb-real/id22_0009.mp4", "Celeb-real/id53_0000.mp4", "Celeb-real/id50_0006.mp4", "Celeb-real/id32_0003.mp4", "Celeb-real/id32_0006.mp4", "Celeb-real/id57_0003.mp4", "Celeb-real/id37_0004.mp4", "Celeb-real/id28_0007.mp4", "Celeb-real/id52_0001.mp4", "Celeb-real/id40_0009.mp4", "Celeb-real/id51_0005.mp4", "Celeb-real/id34_0006.mp4", "Celeb-real/id42_0002.mp4", "Celeb-synthesis/id1_id0_0007.mp4", "Celeb-synthesis/id1_id3_0007.mp4", "Celeb-synthesis/id1_id4_0007.mp4", "Celeb-synthesis/id1_id9_0007.mp4", "Celeb-synthesis/id1_id16_0007.mp4", "Celeb-synthesis/id1_id17_0007.mp4", "Celeb-synthesis/id2_id0_0008.mp4", "Celeb-synthesis/id2_id3_0008.mp4", "Celeb-synthesis/id2_id9_0008.mp4", "Celeb-synthesis/id3_id1_0001.mp4", "Celeb-synthesis/id3_id2_0001.mp4", "Celeb-synthesis/id3_id4_0001.mp4", "Celeb-synthesis/id3_id6_0001.mp4", "Celeb-synthesis/id3_id9_0001.mp4", "Celeb-synthesis/id3_id16_0001.mp4", "Celeb-synthesis/id4_id1_0003.mp4", "Celeb-synthesis/id6_id0_0005.mp4", "Celeb-synthesis/id6_id1_0005.mp4", "Celeb-synthesis/id6_id2_0005.mp4", "Celeb-synthesis/id6_id3_0005.mp4", "Celeb-synthesis/id6_id16_0005.mp4", "Celeb-synthesis/id7_id10_0009.mp4", "Celeb-synthesis/id7_id11_0009.mp4", "Celeb-synthesis/id7_id13_0009.mp4", "Celeb-synthesis/id9_id0_0000.mp4", "Celeb-synthesis/id9_id1_0000.mp4", "Celeb-synthesis/id9_id2_0000.mp4", "Celeb-synthesis/id9_id3_0000.mp4", "Celeb-synthesis/id9_id6_0000.mp4", "Celeb-synthesis/id9_id16_0000.mp4", "Celeb-synthesis/id10_id7_0004.mp4", "Celeb-synthesis/id10_id11_0004.mp4", "Celeb-synthesis/id10_id12_0004.mp4", "Celeb-synthesis/id10_id13_0004.mp4", "Celeb-synthesis/id10_id7_0001.mp4", "Celeb-synthesis/id10_id11_0001.mp4", "Celeb-synthesis/id10_id12_0001.mp4", "Celeb-synthesis/id10_id13_0001.mp4", "Celeb-synthesis/id11_id7_0008.mp4", "Celeb-synthesis/id16_id0_0011.mp4", "Celeb-synthesis/id16_id1_0011.mp4", "Celeb-synthesis/id16_id2_0011.mp4", "Celeb-synthesis/id16_id3_0011.mp4", "Celeb-synthesis/id16_id6_0011.mp4", "Celeb-synthesis/id17_id0_0000.mp4", "Celeb-synthesis/id17_id1_0000.mp4", "Celeb-synthesis/id17_id2_0000.mp4", "Celeb-synthesis/id17_id3_0000.mp4", "Celeb-synthesis/id17_id6_0000.mp4", "Celeb-synthesis/id17_id9_0000.mp4", "Celeb-synthesis/id17_id16_0000.mp4", "Celeb-synthesis/id16_id20_0000.mp4", "Celeb-synthesis/id17_id23_0000.mp4", "Celeb-synthesis/id3_id28_0001.mp4", "Celeb-synthesis/id35_id32_0007.mp4", "Celeb-synthesis/id30_id26_0004.mp4", "Celeb-synthesis/id16_id20_0006.mp4", "Celeb-synthesis/id4_id20_0001.mp4", "Celeb-synthesis/id26_id3_0002.mp4", "Celeb-synthesis/id20_id31_0006.mp4", "Celeb-synthesis/id6_id23_0001.mp4", "Celeb-synthesis/id9_id23_0009.mp4", "Celeb-synthesis/id32_id33_0002.mp4", "Celeb-synthesis/id16_id20_0012.mp4", "Celeb-synthesis/id29_id30_0000.mp4", "Celeb-synthesis/id3_id20_0008.mp4", "Celeb-synthesis/id22_id27_0001.mp4", "Celeb-synthesis/id27_id21_0002.mp4", "Celeb-synthesis/id29_id35_0000.mp4", "Celeb-synthesis/id21_id19_0005.mp4", "Celeb-synthesis/id23_id26_0003.mp4", "Celeb-synthesis/id30_id35_0009.mp4", "Celeb-synthesis/id9_id26_0000.mp4", "Celeb-synthesis/id33_id32_0006.mp4", "Celeb-synthesis/id30_id34_0003.mp4", "Celeb-synthesis/id29_id37_0008.mp4", "Celeb-synthesis/id35_id31_0006.mp4", "Celeb-synthesis/id37_id34_0008.mp4", "Celeb-synthesis/id26_id16_0001.mp4", "Celeb-synthesis/id17_id23_0009.mp4", "Celeb-synthesis/id6_id20_0007.mp4", "Celeb-synthesis/id1_id20_0001.mp4", "Celeb-synthesis/id1_id23_0006.mp4", "Celeb-synthesis/id37_id35_0001.mp4", "Celeb-synthesis/id4_id23_0006.mp4", "Celeb-synthesis/id17_id26_0006.mp4", "Celeb-synthesis/id20_id1_0007.mp4", "Celeb-synthesis/id0_id26_0009.mp4", "Celeb-synthesis/id38_id33_0005.mp4", "Celeb-synthesis/id28_id35_0008.mp4", "Celeb-synthesis/id23_id35_0006.mp4", "Celeb-synthesis/id6_id28_0002.mp4", "Celeb-synthesis/id35_id28_0006.mp4", "Celeb-synthesis/id32_id31_0008.mp4", "Celeb-synthesis/id38_id34_0004.mp4", "Celeb-synthesis/id3_id28_0009.mp4", "Celeb-synthesis/id37_id28_0007.mp4", "Celeb-synthesis/id1_id20_0002.mp4", "Celeb-synthesis/id37_id31_0008.mp4", "Celeb-synthesis/id30_id23_0007.mp4", "Celeb-synthesis/id28_id26_0000.mp4", "Celeb-synthesis/id2_id28_0003.mp4", "Celeb-synthesis/id27_id24_0007.mp4", "Celeb-synthesis/id30_id32_0006.mp4", "Celeb-synthesis/id35_id31_0009.mp4", "Celeb-synthesis/id4_id21_0004.mp4", "Celeb-synthesis/id37_id21_0005.mp4", "Celeb-synthesis/id30_id21_0002.mp4", "Celeb-synthesis/id16_id23_0011.mp4", "Celeb-synthesis/id9_id20_0002.mp4", "Celeb-synthesis/id6_id21_0006.mp4", "Celeb-synthesis/id20_id19_0002.mp4", "Celeb-synthesis/id28_id4_0006.mp4", "Celeb-synthesis/id35_id34_0002.mp4", "Celeb-synthesis/id35_id26_0003.mp4", "Celeb-synthesis/id22_id28_0006.mp4", "Celeb-synthesis/id30_id21_0005.mp4", "Celeb-synthesis/id24_id20_0009.mp4", "Celeb-synthesis/id4_id20_0000.mp4", "Celeb-synthesis/id2_id26_0001.mp4", "Celeb-synthesis/id21_id6_0005.mp4", "Celeb-synthesis/id21_id9_0008.mp4", "Celeb-synthesis/id22_id21_0005.mp4", "Celeb-synthesis/id22_id27_0005.mp4", "Celeb-synthesis/id23_id2_0007.mp4", "Celeb-synthesis/id23_id3_0009.mp4", "Celeb-synthesis/id24_id19_0000.mp4", "Celeb-synthesis/id24_id21_0006.mp4", "Celeb-synthesis/id24_id26_0009.mp4", "Celeb-synthesis/id25_id19_0002.mp4", "Celeb-synthesis/id25_id24_0003.mp4", "Celeb-synthesis/id27_id21_0008.mp4", "Celeb-synthesis/id27_id22_0007.mp4", "Celeb-synthesis/id27_id25_0008.mp4", "Celeb-synthesis/id28_id3_0004.mp4", "Celeb-synthesis/id28_id6_0006.mp4", "Celeb-synthesis/id29_id32_0000.mp4", "Celeb-synthesis/id29_id37_0009.mp4", "Celeb-synthesis/id30_id20_0004.mp4", "Celeb-synthesis/id30_id23_0002.mp4", "Celeb-synthesis/id32_id33_0004.mp4", "Celeb-synthesis/id33_id38_0001.mp4", "Celeb-synthesis/id34_id33_0005.mp4", "Celeb-synthesis/id35_id31_0007.mp4", "Celeb-synthesis/id49_id52_0005.mp4", "Celeb-synthesis/id9_id2_0006.mp4", "Celeb-synthesis/id7_id11_0007.mp4", "Celeb-synthesis/id4_id37_0006.mp4", "Celeb-synthesis/id37_id38_0009.mp4", "Celeb-synthesis/id29_id30_0009.mp4", "Celeb-synthesis/id0_id6_0007.mp4", "Celeb-synthesis/id0_id16_0004.mp4", "Celeb-synthesis/id31_id33_0008.mp4", "Celeb-synthesis/id54_id49_0003.mp4", "Celeb-synthesis/id0_id1_0000.mp4", "Celeb-synthesis/id21_id28_0001.mp4", "Celeb-synthesis/id33_id29_0004.mp4", "Celeb-synthesis/id28_id0_0009.mp4", "Celeb-synthesis/id6_id9_0006.mp4", "Celeb-synthesis/id9_id0_0006.mp4", "Celeb-synthesis/id26_id2_0005.mp4", "Celeb-synthesis/id1_id3_0002.mp4", "Celeb-synthesis/id4_id6_0008.mp4", "Celeb-synthesis/id16_id28_0005.mp4", "Celeb-synthesis/id37_id35_0005.mp4", "Celeb-synthesis/id19_id20_0004.mp4", "Celeb-synthesis/id46_id41_0000.mp4", "Celeb-synthesis/id51_id57_0004.mp4", "Celeb-synthesis/id29_id37_0005.mp4", "Celeb-synthesis/id35_id23_0007.mp4", "Celeb-synthesis/id34_id33_0002.mp4", "Celeb-synthesis/id1_id3_0006.mp4", "Celeb-synthesis/id13_id10_0005.mp4", "Celeb-synthesis/id56_id55_0009.mp4", "Celeb-synthesis/id25_id28_0010.mp4", "Celeb-synthesis/id20_id37_0004.mp4", "Celeb-synthesis/id37_id29_0002.mp4", "Celeb-synthesis/id56_id54_0007.mp4", "Celeb-synthesis/id19_id20_0000.mp4", "Celeb-synthesis/id4_id28_0006.mp4", "Celeb-synthesis/id53_id58_0005.mp4", "Celeb-synthesis/id55_id57_0002.mp4", "Celeb-synthesis/id24_id26_0004.mp4", "Celeb-synthesis/id20_id0_0006.mp4", "Celeb-synthesis/id37_id2_0009.mp4", "Celeb-synthesis/id30_id26_0006.mp4", "Celeb-synthesis/id16_id2_0001.mp4", "Celeb-synthesis/id26_id1_0002.mp4", "Celeb-synthesis/id30_id6_0007.mp4", "Celeb-synthesis/id44_id41_0005.mp4", "Celeb-synthesis/id16_id2_0006.mp4", "Celeb-synthesis/id1_id16_0004.mp4", "Celeb-synthesis/id16_id21_0002.mp4", "Celeb-synthesis/id4_id0_0000.mp4", "Celeb-synthesis/id8_id0_0002.mp4", "Celeb-synthesis/id19_id23_0001.mp4", "Celeb-synthesis/id37_id3_0006.mp4", "Celeb-synthesis/id9_id16_0007.mp4", "Celeb-synthesis/id47_id43_0007.mp4", "Celeb-synthesis/id16_id3_0009.mp4", "Celeb-synthesis/id26_id28_0002.mp4", "Celeb-synthesis/id8_id3_0003.mp4", "Celeb-synthesis/id30_id28_0000.mp4", "Celeb-synthesis/id27_id23_0008.mp4", "Celeb-synthesis/id28_id20_0008.mp4", "Celeb-synthesis/id1_id2_0002.mp4", "Celeb-synthesis/id46_id39_0000.mp4", "Celeb-synthesis/id37_id28_0008.mp4", "Celeb-synthesis/id0_id3_0007.mp4", "Celeb-synthesis/id4_id1_0002.mp4", "Celeb-synthesis/id13_id7_0000.mp4", "Celeb-synthesis/id50_id53_0000.mp4", "Celeb-synthesis/id50_id56_0005.mp4", "Celeb-synthesis/id4_id21_0009.mp4", "Celeb-synthesis/id23_id3_0004.mp4", "Celeb-synthesis/id56_id51_0000.mp4", "Celeb-synthesis/id30_id3_0006.mp4", "Celeb-synthesis/id28_id20_0006.mp4", "Celeb-synthesis/id4_id20_0008.mp4", "Celeb-synthesis/id54_id58_0006.mp4", "Celeb-synthesis/id53_id57_0005.mp4", "Celeb-synthesis/id31_id33_0009.mp4", "Celeb-synthesis/id0_id21_0000.mp4", "Celeb-synthesis/id6_id23_0006.mp4", "Celeb-synthesis/id48_id45_0002.mp4", "Celeb-synthesis/id46_id45_0001.mp4", "Celeb-synthesis/id28_id21_0006.mp4", "Celeb-synthesis/id12_id10_0005.mp4", "Celeb-synthesis/id54_id56_0000.mp4", "Celeb-synthesis/id39_id47_0004.mp4", "Celeb-synthesis/id9_id3_0009.mp4", "Celeb-synthesis/id35_id16_0007.mp4", "Celeb-synthesis/id21_id2_0002.mp4", "Celeb-synthesis/id12_id10_0002.mp4", "Celeb-synthesis/id10_id13_0007.mp4", "Celeb-synthesis/id20_id31_0008.mp4", "Celeb-synthesis/id0_id16_0003.mp4", "Celeb-synthesis/id0_id16_0007.mp4", "Celeb-synthesis/id2_id16_0004.mp4", "Celeb-synthesis/id13_id7_0012.mp4", "Celeb-synthesis/id37_id1_0002.mp4", "Celeb-synthesis/id30_id28_0004.mp4", "Celeb-synthesis/id53_id52_0003.mp4", "Celeb-synthesis/id54_id56_0006.mp4", "Celeb-synthesis/id3_id28_0002.mp4", "Celeb-synthesis/id37_id4_0000.mp4", "Celeb-synthesis/id28_id9_0000.mp4", "Celeb-synthesis/id4_id2_0003.mp4", "Celeb-synthesis/id25_id21_0005.mp4", "Celeb-synthesis/id17_id3_0007.mp4", "Celeb-synthesis/id2_id1_0004.mp4", "Celeb-synthesis/id3_id9_0003.mp4", "Celeb-synthesis/id16_id6_0001.mp4", "Celeb-synthesis/id8_id6_0002.mp4", "Celeb-synthesis/id17_id16_0007.mp4", "Celeb-synthesis/id4_id26_0007.mp4", "Celeb-synthesis/id44_id45_0000.mp4", "Celeb-synthesis/id0_id1_0005.mp4", "Celeb-synthesis/id57_id51_0000.mp4", "Celeb-synthesis/id34_id32_0007.mp4", "Celeb-synthesis/id32_id31_0006.mp4", "Celeb-synthesis/id48_id41_0001.mp4", "Celeb-synthesis/id4_id0_0004.mp4", "Celeb-synthesis/id21_id19_0009.mp4", "Celeb-synthesis/id45_id39_0008.mp4", "Celeb-synthesis/id31_id30_0009.mp4", "Celeb-synthesis/id27_id19_0001.mp4", "Celeb-synthesis/id23_id16_0003.mp4", "Celeb-synthesis/id58_id57_0008.mp4", "Celeb-synthesis/id17_id2_0007.mp4", "Celeb-synthesis/id28_id3_0001.mp4", "Celeb-synthesis/id23_id35_0009.mp4", "Celeb-synthesis/id4_id0_0001.mp4", "Celeb-synthesis/id17_id31_0009.mp4", "Celeb-synthesis/id48_id47_0008.mp4", "Celeb-synthesis/id50_id49_0001.mp4", "Celeb-synthesis/id20_id1_0003.mp4", "Celeb-synthesis/id16_id3_0010.mp4", "Celeb-synthesis/id23_id19_0000.mp4", "Celeb-synthesis/id1_id3_0009.mp4", "Celeb-synthesis/id43_id40_0005.mp4", "Celeb-synthesis/id4_id6_0002.mp4", "Celeb-synthesis/id10_id7_0008.mp4", "Celeb-synthesis/id13_id10_0008.mp4", "Celeb-synthesis/id12_id7_0006.mp4", "Celeb-synthesis/id6_id2_0008.mp4", "Celeb-synthesis/id2_id0_0002.mp4", "Celeb-synthesis/id2_id6_0002.mp4", "Celeb-synthesis/id30_id28_0006.mp4", "Celeb-synthesis/id52_id50_0007.mp4", "Celeb-synthesis/id49_id52_0007.mp4", "Celeb-synthesis/id51_id50_0008.mp4", "Celeb-synthesis/id21_id3_0009.mp4", "Celeb-synthesis/id31_id16_0002.mp4", "Celeb-synthesis/id25_id28_0003.mp4", "Celeb-synthesis/id21_id20_0006.mp4", "Celeb-synthesis/id10_id7_0005.mp4", "Celeb-synthesis/id38_id30_0006.mp4", "Celeb-synthesis/id35_id30_0006.mp4", "Celeb-synthesis/id20_id9_0008.mp4", "Celeb-synthesis/id25_id23_0010.mp4", "Celeb-synthesis/id17_id21_0000.mp4", "Celeb-synthesis/id45_id47_0002.mp4", "Celeb-synthesis/id1_id3_0003.mp4", "Celeb-synthesis/id27_id26_0006.mp4", "Celeb-synthesis/id44_id42_0001.mp4", "Celeb-synthesis/id57_id53_0006.mp4", "Celeb-synthesis/id43_id39_0000.mp4", "Celeb-synthesis/id35_id16_0004.mp4", "Celeb-synthesis/id42_id40_0001.mp4", "Celeb-synthesis/id21_id2_0000.mp4", "Celeb-synthesis/id37_id21_0000.mp4", "Celeb-synthesis/id29_id38_0008.mp4", "Celeb-synthesis/id39_id44_0000.mp4", "Celeb-synthesis/id9_id6_0005.mp4", "Celeb-synthesis/id0_id1_0001.mp4", "Celeb-synthesis/id31_id2_0004.mp4", "Celeb-synthesis/id38_id34_0003.mp4", "Celeb-synthesis/id56_id57_0007.mp4", "Celeb-synthesis/id52_id58_0005.mp4", "Celeb-synthesis/id28_id4_0000.mp4", "Celeb-synthesis/id22_id26_0005.mp4", "Celeb-synthesis/id4_id30_0000.mp4", "Celeb-synthesis/id29_id32_0003.mp4", "Celeb-synthesis/id35_id20_0007.mp4", "Celeb-synthesis/id1_id2_0007.mp4", "Celeb-synthesis/id30_id3_0002.mp4", "Celeb-synthesis/id22_id25_0001.mp4", "Celeb-synthesis/id39_id44_0008.mp4", "Celeb-synthesis/id34_id29_0008.mp4", "Celeb-synthesis/id21_id28_0009.mp4", "Celeb-synthesis/id30_id4_0001.mp4", "Celeb-synthesis/id25_id19_0008.mp4", "Celeb-synthesis/id21_id4_0002.mp4", "Celeb-synthesis/id17_id28_0001.mp4", "Celeb-synthesis/id6_id1_0007.mp4", "Celeb-synthesis/id9_id2_0008.mp4", "Celeb-synthesis/id8_id5_0008.mp4", "Celeb-synthesis/id37_id3_0004.mp4", "Celeb-synthesis/id17_id2_0003.mp"]
\ No newline at end of file
diff --git a/json_file/dfdc_files.json b/json_file/dfdc_files.json
new file mode 100644
index 0000000000000000000000000000000000000000..f0fc9dc85a37bc5276bfb989f0856fe6325da93e
--- /dev/null
+++ b/json_file/dfdc_files.json
@@ -0,0 +1 @@
+["bqdjzqhcft.mp4", "cttqtsjvgn.mp4", "aytzyidmgs.mp4", "arlmiizoob.mp4", "aevrfsexku.mp4", "ddepeddixj.mp4", "abofeumbvv.mp4", "avfitoutyn.mp4", "altziddtxi.mp4", "diopzaywor.mp4", "epymyyiblu.mp4", "cfxkpiweqt.mp4", "eajlrktemq.mp4", "dkhlttuvmx.mp4", "ehccixxzoe.mp4", "dakiztgtnw.mp4", "cdyakrxkia.mp4", "avvdgsennp.mp4", "clihsshdkq.mp4", "cknyxaqouy.mp4", "dqzreruvje.mp4", "caifxvsozs.mp4", "cwsbspfzck.mp4", "bkvetcojbt.mp4", "bwuwstvsbw.mp4", "ceymbecxnj.mp4", "cqhngvpgyi.mp4", "cgvrgibpfo.mp4", "dafhtipaml.mp4", "dptbnjnkdg.mp4", "eczrseixwq.mp4", "dtocdfbwca.mp4", "cmbzllswnl.mp4", "degpbqvcay.mp4", "eejswgycjc.mp4", "akzbnazxtz.mp4", "bulkxhhknf.mp4", "bqkdbcqjvb.mp4", "cwqlvzefpg.mp4", "dtbpmdqvao.mp4", "aelfnikyqj.mp4", "dkuayagnmc.mp4", "cobjrlugvp.mp4", "dlpoieqvfb.mp4", "dbzcqmxzaj.mp4", "erlvuvjsjf.mp4", "bqeiblbxtl.mp4", "ebebgmtlcu.mp4", "dzwkmcwkwl.mp4", "arrhsnjqku.mp4", "drcyabprvt.mp4", "eqjscdagiv.mp4", "bqnymlsayl.mp4", "cyboodqqyr.mp4", "errocgcham.mp4", "cxfujlvsuw.mp4", "cwwandrkus.mp4", "esckbnkkvb.mp4", "btiysiskpf.mp4", "abqwwspghj.mp4", "bmehkyanbj.mp4", "aknmpoonls.mp4", "eukvucdetx.mp4", "aufmsmnoye.mp4", "dbtbbhakdv.mp4", "dvumqqhoac.mp4", "cuzrgrbvil.mp4", "dhevettufk.mp4", "apogckdfrz.mp4", "bghphrsfxf.mp4", "edyncaijwx.mp4", "eivxffliio.mp4", "cyclgfjdrv.mp4", "ejkqesyvam.mp4", "cqrskwiqng.mp4", "dnyvfblxpm.mp4", "benmsfzfaz.mp4", "ayqvfdhslr.mp4", "aknbdpmgua.mp4", "ecujsjhscd.mp4", "dhcndnuwta.mp4", "ehevsxtecd.mp4", "alvgwypubw.mp4", "aklqzsddfl.mp4", "bopqhhalml.mp4", "ddhfabwpuz.mp4", "dhcselezer.mp4", "btjlfpzbdu.mp4", "dqppxmoqdl.mp4", "btunxncpjh.mp4", "chviwxsfhg.mp4", "dzyuwjkjui.mp4", "eggbjzxnmg.mp4", "dzieklokdr.mp4", "ekhacizpah.mp4", "beboztfcme.mp4", "brvqtabyxj.mp4", "btmsngnqhv.mp4", "cepxysienc.mp4", "eprybmbpba.mp4", "dkwjwbwgey.mp4", "ehieahnhte.mp4", "apatcsqejh.mp4", "aslsvlvpth.mp4", "dbnygxtwek.mp4", "ddjggcasdw.mp4", "azpuxunqyo.mp4", "bbhpvrmbse.mp4", "bweezhfpzp.mp4", "bxzakyopjf.mp4", "cvaksbpssm.mp4", "ecwaxgutkc.mp4", "awukslzjra.mp4", "bnbuonyoje.mp4", "byyqectxqa.mp4", "duvyaxbzvp.mp4", "bsqgziaylx.mp4", "asaxgevnnp.mp4", "arkroixhey.mp4", "axczxisdtb.mp4", "cferslmfwh.mp4", "beyebyhrph.mp4", "bmbbkwmxqj.mp4", "czfunozvwp.mp4", "afoovlsmtx.mp4", "bqtuuwzdtr.mp4", "btjwbtsgln.mp4", "bhaaboftbc.mp4", "bilnggbxgu.mp4", "dbhoxkblzx.mp4", "acifjvzvpm.mp4", "ddqccgmtka.mp4", "duzuusuajr.mp4", "dboxtiehng.mp4", "dxbqjxrhin.mp4", "dgxrqjdomn.mp4", "aapnvogymq.mp4", "bjsmaqefoi.mp4", "efdyrflcpg.mp4", "adohikbdaz.mp4", "ajwpjhrbcv.mp4", "bndybcqhfr.mp4", "ebkzwjgjhq.mp4", "atyntldecu.mp4", "agqphdxmwt.mp4", "eoewqcpbgt.mp4", "etejaapnxh.mp4", "bguwlyazau.mp4", "chtapglbcj.mp4", "avywawptfc.mp4", "diuzrpqjli.mp4", "dozyddhild.mp4", "cksanfsjhc.mp4", "djvutyvaio.mp4", "dkzvdrzcnr.mp4", "dzvyfiarrq.mp4", "ecnihjlfyt.mp4", "emfbhytfhc.mp4", "crktehraph.mp4", "cdphtzqrvp.mp4", "djxdyjopjd.mp4", "drgjzlxzxj.mp4", "elvvackpjh.mp4", "bdbhekrrwo.mp4", "dfbpceeaox.mp4", "aagfhgtpmv.mp4", "bhbdugnurr.mp4", "ckjaibzfxa.mp4", "abarnvbtwb.mp4", "avibnnhwhp.mp4", "awhmfnnjih.mp4", "bmioepcpsx.mp4", "eudeqjhdfd.mp4", "bmjzrlszhi.mp4", "bydaidkpdp.mp4", "axntxmycwd.mp4", "aorjvbyxhw.mp4", "adylbeequz.mp4", "asdpeebotb.mp4", "atvmxvwyns.mp4", "bpxckdzddv.mp4", "dgzklxjmix.mp4", "cdaxixbosp.mp4", "bdnaqemxmr.mp4", "bwhlgysghg.mp4", "cxttmymlbn.mp4", "ekkdjkirzq.mp4", "aelzhcnwgf.mp4", "dsgpbgsrdm.mp4", "efwfxwwlbw.mp4", "eqnoqyfquo.mp4", "crezycjqyk.mp4", "eiriyukqqy.mp4", "etmcruaihe.mp4", "dxuplhwvig.mp4", "cnilkgvfei.mp4", "axwgcsyphv.mp4", "byunigvnay.mp4", "bpwzipqtxf.mp4", "esyhwdfnxs.mp4", "btohlidmru.mp4", "bgvhtpzknn.mp4", "byfenovjnf.mp4", "bzythlfnhq.mp4", "cpjxareypw.mp4", "deyyistcrd.mp4", "czmqpxrqoh.mp4", "drtbksnpol.mp4", "asmpfjfzif.mp4", "blzydqdfem.mp4", "dulanfulol.mp4", "bdgipnyobr.mp4", "dvakowbgbt.mp4", "aettqgevhz.mp4", "dqnyszdong.mp4", "bchnbulevv.mp4", "atzdznmder.mp4", "crzfebnfgb.mp4", "cwrtyzndpx.mp4", "etdcqxabww.mp4", "bjjbwsqjir.mp4", "azsmewqghg.mp4", "bqhtpqmmqp.mp4", "czkdanyadc.mp4", "cfyduhpbps.mp4", "erqgqacbqe.mp4", "dgmevclvzy.mp4", "bjkmjilrxp.mp4", "akvmwkdyuv.mp4", "augtsuxpzc.mp4", "esxrvsgpvb.mp4", "alaijyygdv.mp4", "eekozbeafq.mp4", "cmxcfkrjiv.mp4", "dcuiiorugd.mp4", "adhsbajydo.mp4", "dsjbknkujw.mp4", "byofowlkki.mp4", "avssvvsdhz.mp4", "eebserckhh.mp4", "bggsurpgpr.mp4", "alninxcyhg.mp4", "awnwkrqibf.mp4", "avgiuextiz.mp4", "bsfmwclnqy.mp4", "btxlttbpkj.mp4", "bmjmjmbglm.mp4", "cglxirfaey.mp4", "ddpvuimigj.mp4", "ahqqqilsxt.mp4", "bffwsjxghk.mp4", "eeyhxisdfh.mp4", "dxuliowugt.mp4", "agdkmztvby.mp4", "axoygtekut.mp4", "eebrkicpry.mp4", "chzieimrwu.mp4", "drsakwyvqv.mp4", "ehtdtkmmli.mp4", "byijojkdba.mp4", "bntlodcfeg.mp4", "etohcvnzbj.mp4", "dlrsbscitn.mp4", "clrycekyst.mp4", "cxrfacemmq.mp4", "egbbcxcuqy.mp4", "ahdbuwqxit.mp4", "bkmdzhfzfh.mp4", "bourlmzsio.mp4", "dkdwxmtpuo.mp4", "aczrgyricp.mp4", "bgmlwsoamc.mp4", "axwovszumc.mp4", "acxnxvbsxk.mp4", "bejhvclboh.mp4", "bofqajtwve.mp4", "bddjdhzfze.mp4", "bvgwelbeof.mp4", "ctpqeykqdp.mp4", "deywhkarol.mp4", "dhoqofwoxa.mp4", "akxoopqjqz.mp4", "andaxzscny.mp4", "dntkzzzcdh.mp4", "bzmdrafeex.mp4", "cppdvdejkc.mp4", "diomeixhrg.mp4", "coadfnerlk.mp4", "eahlqmfvtj.mp4", "ciyoudyhly.mp4", "cycacemkmt.mp4", "ccfoszqabv.mp4", "cyxlcuyznd.mp4", "bpapbctoao.mp4", "dwediigjit.mp4", "doanjploai.mp4", "dofusvhnib.mp4", "boovltmuwi.mp4", "dbhrpizyeq.mp4", "agrmhtjdlk.mp4", "djvtbgwdcc.mp4", "esnntzzajv.mp4", "aqpnvjhuzw.mp4", "atxvxouljq.mp4", "bdxuhamuqx.mp4", "aipfdnwpoo.mp4", "dhjmzhrcav.mp4", "bnjcdrfuov.mp4", "cizlkenljw.mp4", "cqfugiqupm.mp4", "avnqydkqjj.mp4", "bgwmmujlmc.mp4", "curpwogllm.mp4", "ckbdwedgmc.mp4", "ccmonzqfrz.mp4", "dbzpcjntve.mp4", "btugrnoton.mp4", "byqzyxifza.mp4", "bmhvktyiwp.mp4", "ckkuyewywx.mp4", "bhsluedavd.mp4", "eiwopxzjfn.mp4", "dhkwmjxwrn.mp4", "bahdpoesir.mp4", "ellavthztb.mp4", "dsdoseflas.mp4", "dptrzdvwpg.mp4", "atkdltyyen.mp4", "dqqtjcryjv.mp4", "cettndmvzl.mp4", "duycddgtrl.mp4", "dzqwgqewhu.mp4", "amowujxmzc.mp4", "ensyyivobf.mp4", "ahfazfbntc.mp4", "brwrlczjvi.mp4", "ehbnclaukr.mp4", "avmjormvsx.mp4", "dnexlwbcxq.mp4", "eepezmygaq.mp4", "ctzmavwror.mp4", "dqswpjoepo.mp4", "cprhtltsjp.mp4", "bqqpbzjgup.mp4", "ahbweevwpv.mp4", "dubiroskqn.mp4", "ecuvtoltue.mp4", "bseamdrpbj.mp4", "ajqslcypsw.mp4", "dkrvorliqc.mp4", "ebywfrmhtd.mp4", "avtycwsgyb.mp4", "emgjphonqb.mp4", "esyrimvzsa.mp4", "cbltdtxglo.mp4", "aybgughjxh.mp4", "caqbrkogkb.mp4", "eixwxvxbbn.mp4", "ehfiekigla.mp4", "eckvhdusax.mp4", "amaivqofda.mp4", "diqraixiov.mp4", "cbbibzcoih.mp4", "bkwxhglwct.mp4", "ekcrtigpab.mp4", "bgaogsjehq.mp4", "dnhvalzvrt.mp4", "esgftaficx.mp4", "bhpwpydzpo.mp4", "cdbsbdymzd.mp4", "dhxctgyoqj.mp4", "aneclqfpbt.mp4", "dakqwktlbi.mp4", "ebeknhudxq.mp4", "ebchwmwayp.mp4", "dsndhujjjb.mp4", "anpuvshzoo.mp4", "brhalypwoo.mp4", "ehdkmxgtxh.mp4", "eqvuznuwsa.mp4", "aladcziidp.mp4", "bbhtdfuqxq.mp4", "covdcysmbi.mp4", "asvcrfdpnq.mp4", "dcamvmuors.mp4", "acqfdwsrhi.mp4", "blpchvmhxx.mp4", "emaalmsonj.mp4", "bbvgxeczei.mp4", "bwipwzzxxu.mp4", "egghxjjmfg.mp4", "acxwigylke.mp4", "cwbacdwrzo.mp4", "bctvsmddgq.mp4", "cffffbcywc.mp4", "aybumesmpk.mp4", "bvzjkezkms.mp4", "cthdnahrkh.mp4", "apgjqzkoma.mp4", "elginszwtk.mp4"]
\ No newline at end of file
diff --git a/json_file/ff_file_list.json b/json_file/ff_file_list.json
new file mode 100644
index 0000000000000000000000000000000000000000..3514fbd7c3200b95b3b7f3ae88b4e5d9f244e79a
--- /dev/null
+++ b/json_file/ff_file_list.json
@@ -0,0 +1 @@
+["01__exit_phone_room_actors_c23.mp4", "01__hugging_happy_actors_c23.mp4", "01__kitchen_pan_actors_c23.mp4", "01__kitchen_still_actors_c23.mp4", "01__meeting_serious_actors_c23.mp4", "01__outside_talking_pan_laughing_actors_c23.mp4", "01__outside_talking_still_laughing_actors_c23.mp4", "01__podium_speech_happy_actors_c23.mp4", "01__secret_conversation_actors_c23.mp4", "01__talking_against_wall_actors_c23.mp4", "01__talking_angry_couch_actors_c23.mp4", "01__walking_and_outside_surprised_actors_c23.mp4", "01__walking_down_indoor_hall_disgust_actors_c23.mp4", "01__walking_down_street_outside_angry_actors_c23.mp4", "01__walking_outside_cafe_disgusted_actors_c23.mp4", "01__walk_down_hall_angry_actors_c23.mp4", "02__exit_phone_room_actors_c23.mp4", "02__hugging_happy_actors_c23.mp4", "02__kitchen_pan_actors_c23.mp4", "02__kitchen_still_actors_c23.mp4", "02__meeting_serious_actors_c23.mp4", "02__outside_talking_pan_laughing_actors_c23.mp4", "02__outside_talking_still_laughing_actors_c23.mp4", "02__podium_speech_happy_actors_c23.mp4", "02__secret_conversation_actors_c23.mp4", "02__talking_against_wall_actors_c23.mp4", "02__talking_angry_couch_actors_c23.mp4", "02__walking_and_outside_surprised_actors_c23.mp4", "02__walking_down_indoor_hall_disgust_actors_c23.mp4", "02__walking_down_street_outside_angry_actors_c23.mp4", "02__walking_outside_cafe_disgusted_actors_c23.mp4", "02__walk_down_hall_angry_actors_c23.mp4", "03__exit_phone_room_actors_c23.mp4", "03__hugging_happy_actors_c23.mp4", "03__kitchen_pan_actors_c23.mp4", "03__kitchen_still_actors_c23.mp4", "03__meeting_serious_actors_c23.mp4", "03__outside_talking_pan_laughing_actors_c23.mp4", "03__outside_talking_still_laughing_actors_c23.mp4", "03__podium_speech_happy_actors_c23.mp4", "03__secret_conversation_actors_c23.mp4", "03__talking_against_wall_actors_c23.mp4", "03__talking_angry_couch_actors_c23.mp4", "03__walking_and_outside_surprised_actors_c23.mp4", "03__walking_down_indoor_hall_disgust_actors_c23.mp4", "03__walking_down_street_outside_angry_actors_c23.mp4", "03__walking_outside_cafe_disgusted_actors_c23.mp4", "03__walk_down_hall_angry_actors_c23.mp4", "04__exit_phone_room_actors_c23.mp4", "04__kitchen_pan_actors_c23.mp4", "04__kitchen_still_actors_c23.mp4", "04__outside_talking_pan_laughing_actors_c23.mp4", "04__outside_talking_still_laughing_actors_c23.mp4", "04__podium_speech_happy_actors_c23.mp4", "04__secret_conversation_actors_c23.mp4", "04__talking_against_wall_actors_c23.mp4", "04__talking_angry_couch_actors_c23.mp4", "04__walking_down_street_outside_angry_actors_c23.mp4", "04__walking_outside_cafe_disgusted_actors_c23.mp4", "04__walk_down_hall_angry_actors_c23.mp4", "05__exit_phone_room_actors_c23.mp4", "05__hugging_happy_actors_c23.mp4", "05__kitchen_pan_actors_c23.mp4", "05__kitchen_still_actors_c23.mp4", "05__outside_talking_pan_laughing_actors_c23.mp4", "05__outside_talking_still_laughing_actors_c23.mp4", "05__podium_speech_happy_actors_c23.mp4", "05__talking_against_wall_actors_c23.mp4", "05__walking_down_street_outside_angry_actors_c23.mp4", "05__walking_outside_cafe_disgusted_actors_c23.mp4", "05__walk_down_hall_angry_actors_c23.mp4", "06__exit_phone_room_actors_c23.mp4", "06__hugging_happy_actors_c23.mp4", "06__kitchen_pan_actors_c23.mp4", "06__kitchen_still_actors_c23.mp4", "06__outside_talking_pan_laughing_actors_c23.mp4", "06__outside_talking_still_laughing_actors_c23.mp4", "06__podium_speech_happy_actors_c23.mp4", "06__talking_against_wall_actors_c23.mp4", "06__talking_angry_couch_actors_c23.mp4", "06__walking_and_outside_surprised_actors_c23.mp4", "06__walking_down_indoor_hall_disgust_actors_c23.mp4", "06__walking_down_street_outside_angry_actors_c23.mp4", "06__walking_outside_cafe_disgusted_actors_c23.mp4", "06__walk_down_hall_angry_actors_c23.mp4", "07__exit_phone_room_actors_c23.mp4", "07__hugging_happy_actors_c23.mp4", "07__kitchen_pan_actors_c23.mp4", "07__kitchen_still_actors_c23.mp4", "07__outside_talking_pan_laughing_actors_c23.mp4", "07__outside_talking_still_laughing_actors_c23.mp4", "07__podium_speech_happy_actors_c23.mp4", "07__secret_conversation_actors_c23.mp4", "07__talking_against_wall_actors_c23.mp4", "07__talking_angry_couch_actors_c23.mp4", "07__walking_down_street_outside_angry_actors_c23.mp4", "07__walking_outside_cafe_disgusted_actors_c23.mp4", "07__walk_down_hall_angry_actors_c23.mp4", "08__exit_phone_room_actors_c23.mp4", "08__kitchen_pan_actors_c23.mp4", "08__kitchen_still_actors_c23.mp4", "08__outside_talking_pan_laughing_actors_c23.mp4", "08__outside_talking_still_laughing_actors_c23.mp4", "08__podium_speech_happy_actors_c23.mp4", "08__talking_against_wall_actors_c23.mp4", "08__walking_down_street_outside_angry_actors_c23.mp4", "08__walking_outside_cafe_disgusted_actors_c23.mp4", "08__walk_down_hall_angry_actors_c23.mp4", "09__exit_phone_room_actors_c23.mp4", "09__kitchen_pan_actors_c23.mp4", "09__outside_talking_pan_laughing_actors_c23.mp4", "09__outside_talking_still_laughing_actors_c23.mp4", "09__podium_speech_happy_actors_c23.mp4", "09__talking_against_wall_actors_c23.mp4", "09__talking_angry_couch_actors_c23.mp4", "09__walking_down_street_outside_angry_actors_c23.mp4", "09__walk_down_hall_angry_actors_c23.mp4", "10__exit_phone_room_actors_c23.mp4", "10__kitchen_pan_actors_c23.mp4", "10__kitchen_still_actors_c23.mp4", "10__outside_talking_pan_laughing_actors_c23.mp4", "10__outside_talking_still_laughing_actors_c23.mp4", "10__podium_speech_happy_actors_c23.mp4", "10__talking_against_wall_actors_c23.mp4", "10__talking_angry_couch_actors_c23.mp4", "10__walking_down_street_outside_angry_actors_c23.mp4", "10__walking_outside_cafe_disgusted_actors_c23.mp4", "10__walk_down_hall_angry_actors_c23.mp4", "11__exit_phone_room_actors_c23.mp4", "11__kitchen_pan_actors_c23.mp4", "11__kitchen_still_actors_c23.mp4", "11__outside_talking_pan_laughing_actors_c23.mp4", "11__outside_talking_still_laughing_actors_c23.mp4", "11__podium_speech_happy_actors_c23.mp4", "11__secret_conversation_actors_c23.mp4", "11__talking_against_wall_actors_c23.mp4", "11__talking_angry_couch_actors_c23.mp4", "11__walking_down_street_outside_angry_actors_c23.mp4", "11__walking_outside_cafe_disgusted_actors_c23.mp4", "11__walk_down_hall_angry_actors_c23.mp4", "12__exit_phone_room_actors_c23.mp4", "12__hugging_happy_actors_c23.mp4", "12__kitchen_pan_actors_c23.mp4", "12__kitchen_still_actors_c23.mp4", "12__outside_talking_pan_laughing_actors_c23.mp4", "12__outside_talking_still_laughing_actors_c23.mp4", "12__podium_speech_happy_actors_c23.mp4", "12__secret_conversation_actors_c23.mp4", "12__talking_against_wall_actors_c23.mp4", "12__talking_angry_couch_actors_c23.mp4", "12__walking_and_outside_surprised_actors_c23.mp4", "12__walking_down_indoor_hall_disgust_actors_c23.mp4", "12__walking_down_street_outside_angry_actors_c23.mp4", "12__walking_outside_cafe_disgusted_actors_c23.mp4", "12__walk_down_hall_angry_actors_c23.mp4", "13__exit_phone_room_actors_c23.mp4", "13__hugging_happy_actors_c23.mp4", "13__kitchen_pan_actors_c23.mp4", "13__kitchen_still_actors_c23.mp4", "13__outside_talking_pan_laughing_actors_c23.mp4", "13__outside_talking_still_laughing_actors_c23.mp4", "13__podium_speech_happy_actors_c23.mp4", "13__secret_conversation_actors_c23.mp4", "13__talking_against_wall_actors_c23.mp4", "13__talking_angry_couch_actors_c23.mp4", "13__walking_and_outside_surprised_actors_c23.mp4", "13__walking_down_indoor_hall_disgust_actors_c23.mp4", "13__walking_down_street_outside_angry_actors_c23.mp4", "13__walking_outside_cafe_disgusted_actors_c23.mp4", "13__walk_down_hall_angry_actors_c23.mp4", "14__exit_phone_room_actors_c23.mp4", "14__hugging_happy_actors_c23.mp4", "14__kitchen_pan_actors_c23.mp4", "14__kitchen_still_actors_c23.mp4", "14__outside_talking_pan_laughing_actors_c23.mp4", "14__outside_talking_still_laughing_actors_c23.mp4", "14__podium_speech_happy_actors_c23.mp4", "14__secret_conversation_actors_c23.mp4", "14__talking_against_wall_actors_c23.mp4", "14__talking_angry_couch_actors_c23.mp4", "14__walking_and_outside_surprised_actors_c23.mp4", "14__walking_down_indoor_hall_disgust_actors_c23.mp4", "14__walking_down_street_outside_angry_actors_c23.mp4", "14__walking_outside_cafe_disgusted_actors_c23.mp4", "14__walk_down_hall_angry_actors_c23.mp4", "15__exit_phone_room_actors_c23.mp4", "15__hugging_happy_actors_c23.mp4", "15__kitchen_pan_actors_c23.mp4", "15__kitchen_still_actors_c23.mp4", "15__outside_talking_pan_laughing_actors_c23.mp4", "15__outside_talking_still_laughing_actors_c23.mp4", "15__podium_speech_happy_actors_c23.mp4", "15__talking_against_wall_actors_c23.mp4", "15__talking_angry_couch_actors_c23.mp4", "15__walking_and_outside_surprised_actors_c23.mp4", "15__walking_down_indoor_hall_disgust_actors_c23.mp4", "15__walking_down_street_outside_angry_actors_c23.mp4", "15__walking_outside_cafe_disgusted_actors_c23.mp4", "15__walk_down_hall_angry_actors_c23.mp4", "16__exit_phone_room_actors_c23.mp4", "16__hugging_happy_actors_c23.mp4", "16__kitchen_pan_actors_c23.mp4", "16__kitchen_still_actors_c23.mp4", "16__outside_talking_pan_laughing_actors_c23.mp4", "950_836_neuralTextures.mp4", "951_947_neuralTextures.mp4", "952_882_neuralTextures.mp4", "953_974_neuralTextures.mp4", "954_976_neuralTextures.mp4", "955_078_neuralTextures.mp4", "956_958_neuralTextures.mp4", "957_959_neuralTextures.mp4", "958_956_neuralTextures.mp4", "959_957_neuralTextures.mp4", "960_999_neuralTextures.mp4", "961_069_neuralTextures.mp4", "962_929_neuralTextures.mp4", "963_879_neuralTextures.mp4", "964_174_neuralTextures.mp4", "965_948_neuralTextures.mp4", "966_988_neuralTextures.mp4", "967_984_neuralTextures.mp4", "968_884_neuralTextures.mp4", "969_897_neuralTextures.mp4", "970_973_neuralTextures.mp4", "971_564_neuralTextures.mp4", "972_718_neuralTextures.mp4", "973_970_neuralTextures.mp4", "974_953_neuralTextures.mp4", "975_978_neuralTextures.mp4", "976_954_neuralTextures.mp4", "977_075_neuralTextures.mp4", "978_975_neuralTextures.mp4", "979_875_neuralTextures.mp4", "980_992_neuralTextures.mp4", "981_985_neuralTextures.mp4", "982_004_neuralTextures.mp4", "983_113_neuralTextures.mp4", "984_967_neuralTextures.mp4", "985_981_neuralTextures.mp4", "986_994_neuralTextures.mp4", "987_938_neuralTextures.mp4", "988_966_neuralTextures.mp4", "989_993_neuralTextures.mp4", "990_008_neuralTextures.mp4", "991_064_neuralTextures.mp4", "992_980_neuralTextures.mp4", "993_989_neuralTextures.mp4", "994_986_neuralTextures.mp4", "995_233_neuralTextures.mp4", "996_056_neuralTextures.mp4", "997_040_neuralTextures.mp4", "998_561_neuralTextures.mp4", "999_960_neuralTextures.mp4", "950_836_face2Face.mp4", "951_947_face2Face.mp4", "952_882_face2Face.mp4", "953_974_face2Face.mp4", "954_976_face2Face.mp4", "955_078_face2Face.mp4", "956_958_face2Face.mp4", "957_959_face2Face.mp4", "958_956_face2Face.mp4", "959_957_face2Face.mp4", "960_999_face2Face.mp4", "961_069_face2Face.mp4", "962_929_face2Face.mp4", "963_879_face2Face.mp4", "964_174_face2Face.mp4", "965_948_face2Face.mp4", "966_988_face2Face.mp4", "967_984_face2Face.mp4", "968_884_face2Face.mp4", "969_897_face2Face.mp4", "970_973_face2Face.mp4", "971_564_face2Face.mp4", "972_718_face2Face.mp4", "973_970_face2Face.mp4", "974_953_face2Face.mp4", "975_978_face2Face.mp4", "976_954_face2Face.mp4", "977_075_face2Face.mp4", "978_975_face2Face.mp4", "979_875_face2Face.mp4", "980_992_face2Face.mp4", "981_985_face2Face.mp4", "982_004_face2Face.mp4", "983_113_face2Face.mp4", "984_967_face2Face.mp4", "985_981_face2Face.mp4", "986_994_face2Face.mp4", "987_938_face2Face.mp4", "988_966_face2Face.mp4", "989_993_face2Face.mp4", "990_008_face2Face.mp4", "991_064_face2Face.mp4", "992_980_face2Face.mp4", "993_989_face2Face.mp4", "994_986_face2Face.mp4", "995_233_face2Face.mp4", "996_056_face2Face.mp4", "997_040_face2Face.mp4", "998_561_face2Face.mp4", "999_960_face2Face.mp4", "249_280c23_deepfakes.mp4", "296_293c23_deepfakes.mp4", "513_305c23_deepfakes.mp4", "950_836c23_deepfakes.mp4", "951_947c23_deepfakes.mp4", "952_882c23_deepfakes.mp4", "953_974c23_deepfakes.mp4", "954_976c23_deepfakes.mp4", "955_078c23_deepfakes.mp4", "956_958c23_deepfakes.mp4", "957_959c23_deepfakes.mp4", "958_956c23_deepfakes.mp4", "959_957c23_deepfakes.mp4", "960_999c23_deepfakes.mp4", "961_069c23_deepfakes.mp4", "962_929c23_deepfakes.mp4", "963_879c23_deepfakes.mp4", "964_174c23_deepfakes.mp4", "965_948c23_deepfakes.mp4", "966_988c23_deepfakes.mp4", "967_984c23_deepfakes.mp4", "968_884c23_deepfakes.mp4", "969_897c23_deepfakes.mp4", "970_973c23_deepfakes.mp4", "971_564c23_deepfakes.mp4", "972_718c23_deepfakes.mp4", "973_970c23_deepfakes.mp4", "974_953c23_deepfakes.mp4", "975_978c23_deepfakes.mp4", "976_954c23_deepfakes.mp4", "977_075c23_deepfakes.mp4", "978_975c23_deepfakes.mp4", "979_875c23_deepfakes.mp4", "980_992c23_deepfakes.mp4", "981_985c23_deepfakes.mp4", "982_004c23_deepfakes.mp4", "983_113c23_deepfakes.mp4", "984_967c23_deepfakes.mp4", "985_981c23_deepfakes.mp4", "986_994c23_deepfakes.mp4", "987_938c23_deepfakes.mp4", "988_966c23_deepfakes.mp4", "989_993c23_deepfakes.mp4", "990_008c23_deepfakes.mp4", "991_064c23_deepfakes.mp4", "992_980c23_deepfakes.mp4", "993_989c23_deepfakes.mp4", "994_986c23_deepfakes.mp4", "995_233c23_deepfakes.mp4", "996_056c23_deepfakes.mp4", "997_040c23_deepfakes.mp4", "998_561c23_deepfakes.mp4", "999_960c23_deepfakes.mp4", "950_836c40_Deepfakes.mp4", "951_947c40_Deepfakes.mp4", "952_882c40_Deepfakes.mp4", "953_974c40_Deepfakes.mp4", "954_976c40_Deepfakes.mp4", "955_078c40_Deepfakes.mp4", "956_958c40_Deepfakes.mp4", "957_959c40_Deepfakes.mp4", "958_956c40_Deepfakes.mp4", "959_957c40_Deepfakes.mp4", "960_999c40_Deepfakes.mp4", "961_069c40_Deepfakes.mp4", "962_929c40_Deepfakes.mp4", "963_879c40_Deepfakes.mp4", "964_174c40_Deepfakes.mp4", "965_948c40_Deepfakes.mp4", "966_988c40_Deepfakes.mp4", "967_984c40_Deepfakes.mp4", "968_884c40_Deepfakes.mp4", "969_897c40_Deepfakes.mp4", "970_973c40_Deepfakes.mp4", "971_564c40_Deepfakes.mp4", "972_718c40_Deepfakes.mp4", "973_970c40_Deepfakes.mp4", "974_953c40_Deepfakes.mp4", "975_978c40_Deepfakes.mp4", "976_954c40_Deepfakes.mp4", "977_075c40_Deepfakes.mp4", "978_975c40_Deepfakes.mp4", "979_875c40_Deepfakes.mp4", "980_992c40_Deepfakes.mp4", "981_985c40_Deepfakes.mp4", "982_004c40_Deepfakes.mp4", "983_113c40_Deepfakes.mp4", "984_967c40_Deepfakes.mp4", "985_981c40_Deepfakes.mp4", "986_994c40_Deepfakes.mp4", "987_938c40_Deepfakes.mp4", "988_966c40_Deepfakes.mp4", "989_993c40_Deepfakes.mp4", "990_008c40_Deepfakes.mp4", "991_064c40_Deepfakes.mp4", "992_980c40_Deepfakes.mp4", "993_989c40_Deepfakes.mp4", "994_986c40_Deepfakes.mp4", "995_233c40_Deepfakes.mp4", "996_056c40_Deepfakes.mp4", "997_040c40_Deepfakes.mp4", "998_561c40_Deepfakes.mp4", "999_960c40_Deepfakes.mp4"]
\ No newline at end of file
diff --git a/model/__init__.py b/model/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/model/__pycache__/__init__.cpython-311.pyc b/model/__pycache__/__init__.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a41ca04da37b2bc1ecb6cd8e10f4fdd12946ab07
Binary files /dev/null and b/model/__pycache__/__init__.cpython-311.pyc differ
diff --git a/model/__pycache__/config.cpython-311.pyc b/model/__pycache__/config.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..96cbb06d35336f229bfdee644165286fb6159328
Binary files /dev/null and b/model/__pycache__/config.cpython-311.pyc differ
diff --git a/model/__pycache__/face_detection.cpython-311.pyc b/model/__pycache__/face_detection.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5a34c8ad7dfa7c638b5a02c5b359dd31df79e5d7
Binary files /dev/null and b/model/__pycache__/face_detection.cpython-311.pyc differ
diff --git a/model/__pycache__/genconvit.cpython-311.pyc b/model/__pycache__/genconvit.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..68d5553d4ba7204b627e1c75babee83fbe3ba533
Binary files /dev/null and b/model/__pycache__/genconvit.cpython-311.pyc differ
diff --git a/model/__pycache__/genconvit_ed.cpython-311.pyc b/model/__pycache__/genconvit_ed.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4a6f81af16c850566e8df4c3c450a10ff33efaf5
Binary files /dev/null and b/model/__pycache__/genconvit_ed.cpython-311.pyc differ
diff --git a/model/__pycache__/genconvit_vae.cpython-311.pyc b/model/__pycache__/genconvit_vae.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..28667eb2e9f42310cc58f2e75b58262447a35c9c
Binary files /dev/null and b/model/__pycache__/genconvit_vae.cpython-311.pyc differ
diff --git a/model/__pycache__/model_embedder.cpython-311.pyc b/model/__pycache__/model_embedder.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c0643595c7f563e7bc9321470799f2da34e18b00
Binary files /dev/null and b/model/__pycache__/model_embedder.cpython-311.pyc differ
diff --git a/model/__pycache__/pred_func.cpython-311.pyc b/model/__pycache__/pred_func.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..63116a84217881bb18be1b93465875b18bf8717a
Binary files /dev/null and b/model/__pycache__/pred_func.cpython-311.pyc differ
diff --git a/model/config.py b/model/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..7e83514ec32c7f9d08aafb0863df7fa12ef623b5
--- /dev/null
+++ b/model/config.py
@@ -0,0 +1,10 @@
+import yaml
+import os
+
+#read yaml file
+
+def load_config():
+ with open(os.path.join('model','config.yaml')) as file:
+ config= yaml.safe_load(file)
+
+ return config
diff --git a/model/config.yaml b/model/config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9d794cb529fb1c576b65b73bc7e80692fb8dc472
--- /dev/null
+++ b/model/config.yaml
@@ -0,0 +1,12 @@
+model:
+ backbone: convnext_tiny
+ embedder: swin_tiny_patch4_window7_224
+ latent_dims: 12544
+
+batch_size: 32
+epoch: 1
+learning_rate: 0.0001
+weight_decay: 0.0001
+num_classes: 2
+img_size: 224
+min_val_loss: 10000
\ No newline at end of file
diff --git a/model/face_detection.py b/model/face_detection.py
new file mode 100644
index 0000000000000000000000000000000000000000..654eddfe830dc90b1171ef63b6ada62436be4841
--- /dev/null
+++ b/model/face_detection.py
@@ -0,0 +1,51 @@
+import cv2
+import numpy as np
+from tqdm import tqdm
+
+def detect_faces(frames, min_face_size=30):
+ """
+ Detect faces in frames using OpenCV's Haar Cascade classifier instead of dlib
+
+ Args:
+ frames: List of frames to detect faces in
+ min_face_size: Minimum face size to detect
+
+ Returns:
+ Tuple of (face_frames, count) where face_frames is a numpy array of detected faces
+ and count is the number of faces detected
+ """
+ # Initialize face detector
+ face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
+
+ # Initialize array to store faces
+ temp_face = np.zeros((len(frames), 224, 224, 3), dtype=np.uint8)
+ count = 0
+
+ # Process each frame
+ for _, frame in tqdm(enumerate(frames), total=len(frames)):
+ # Convert to grayscale for face detection
+ gray = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
+ gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY)
+
+ # Detect faces
+ faces = face_cascade.detectMultiScale(
+ gray,
+ scaleFactor=1.1,
+ minNeighbors=5,
+ minSize=(min_face_size, min_face_size)
+ )
+
+ # Process each detected face
+ for (x, y, w, h) in faces:
+ if count < len(frames):
+ # Extract and resize face
+ face_image = frame[y:y+h, x:x+w]
+ face_image = cv2.resize(face_image, (224, 224), interpolation=cv2.INTER_AREA)
+
+ # Store face
+ temp_face[count] = face_image
+ count += 1
+ else:
+ break
+
+ return ([], 0) if count == 0 else (temp_face[:count], count)
\ No newline at end of file
diff --git a/model/genconvit.py b/model/genconvit.py
new file mode 100644
index 0000000000000000000000000000000000000000..659bc4f917d1cc9a8146c7ba4579e88581ce52b1
--- /dev/null
+++ b/model/genconvit.py
@@ -0,0 +1,75 @@
+import torch
+import torch.nn as nn
+from .genconvit_ed import GenConViTED
+from .genconvit_vae import GenConViTVAE
+from torchvision import transforms
+
+class GenConViT(nn.Module):
+
+ def __init__(self, config, ed, vae, net, fp16):
+ super(GenConViT, self).__init__()
+ self.net = net
+ self.fp16 = fp16
+ if self.net=='ed':
+ try:
+ self.model_ed = GenConViTED(config)
+ self.checkpoint_ed = torch.load(f'weight/{ed}.pth', map_location=torch.device('cpu'))
+
+ if 'state_dict' in self.checkpoint_ed:
+ self.model_ed.load_state_dict(self.checkpoint_ed['state_dict'])
+ else:
+ self.model_ed.load_state_dict(self.checkpoint_ed)
+
+ self.model_ed.eval()
+ if self.fp16:
+ self.model_ed.half()
+ except FileNotFoundError:
+ raise Exception(f"Error: weight/{ed}.pth file not found.")
+ elif self.net=='vae':
+ try:
+ self.model_vae = GenConViTVAE(config)
+ self.checkpoint_vae = torch.load(f'weight/{vae}.pth', map_location=torch.device('cpu'))
+
+ if 'state_dict' in self.checkpoint_vae:
+ self.model_vae.load_state_dict(self.checkpoint_vae['state_dict'])
+ else:
+ self.model_vae.load_state_dict(self.checkpoint_vae)
+
+ self.model_vae.eval()
+ if self.fp16:
+ self.model_vae.half()
+ except FileNotFoundError:
+ raise Exception(f"Error: weight/{vae}.pth file not found.")
+ else:
+ try:
+ self.model_ed = GenConViTED(config)
+ self.model_vae = GenConViTVAE(config)
+ self.checkpoint_ed = torch.load(f'weight/{ed}.pth', map_location=torch.device('cpu'))
+ self.checkpoint_vae = torch.load(f'weight/{vae}.pth', map_location=torch.device('cpu'))
+ if 'state_dict' in self.checkpoint_ed:
+ self.model_ed.load_state_dict(self.checkpoint_ed['state_dict'])
+ else:
+ self.model_ed.load_state_dict(self.checkpoint_ed)
+ if 'state_dict' in self.checkpoint_vae:
+ self.model_vae.load_state_dict(self.checkpoint_vae['state_dict'])
+ else:
+ self.model_vae.load_state_dict(self.checkpoint_vae)
+ self.model_ed.eval()
+ self.model_vae.eval()
+ if self.fp16:
+ self.model_ed.half()
+ self.model_vae.half()
+ except FileNotFoundError as e:
+ raise Exception(f"Error: Model weights file not found.")
+
+
+ def forward(self, x):
+ if self.net == 'ed' :
+ x = self.model_ed(x)
+ elif self.net == 'vae':
+ x,_ = self.model_vae(x)
+ else:
+ x1 = self.model_ed(x)
+ x2,_ = self.model_vae(x)
+ x = torch.cat((x1, x2), dim=0) #(x1+x2)/2 #
+ return x
diff --git a/model/genconvit_ed.py b/model/genconvit_ed.py
new file mode 100644
index 0000000000000000000000000000000000000000..03a9da2875d78f31c81a96476156eef5c3c2709b
--- /dev/null
+++ b/model/genconvit_ed.py
@@ -0,0 +1,89 @@
+import torch
+import torch.nn as nn
+from torchvision import transforms
+from timm import create_model
+import timm
+from .model_embedder import HybridEmbed
+
+class Encoder(nn.Module):
+
+ def __init__(self):
+ super().__init__()
+
+ self.features = nn.Sequential(
+ nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
+ nn.ReLU(inplace=True),
+ nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0),
+
+ nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
+ nn.ReLU(inplace=True),
+ nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0),
+
+ nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
+ nn.ReLU(inplace=True),
+ nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0),
+
+ nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
+ nn.ReLU(inplace=True),
+ nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)),
+
+ nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
+ nn.ReLU(inplace=True),
+ nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0)
+ )
+
+ def forward(self, x):
+ return self.features(x)
+
+class Decoder(nn.Module):
+
+ def __init__(self):
+ super().__init__()
+
+ self.features = nn.Sequential(
+ nn.ConvTranspose2d(256, 128, kernel_size=(2, 2), stride=(2, 2)),
+ nn.ReLU(inplace=True),
+
+ nn.ConvTranspose2d(128, 64, kernel_size=(2, 2), stride=(2, 2)),
+ nn.ReLU(inplace=True),
+
+ nn.ConvTranspose2d(64, 32, kernel_size=(2, 2), stride=(2, 2)),
+ nn.ReLU(inplace=True),
+
+ nn.ConvTranspose2d(32, 16, kernel_size=(2, 2), stride=(2, 2)),
+ nn.ReLU(inplace=True),
+
+ nn.ConvTranspose2d(16, 3, kernel_size=(2, 2), stride=(2, 2)),
+ nn.ReLU(inplace=True)
+ )
+
+ def forward(self, x):
+ return self.features(x)
+
+class GenConViTED(nn.Module):
+ def __init__(self, config, pretrained=True):
+ super(GenConViTED, self).__init__()
+ self.encoder = Encoder()
+ self.decoder = Decoder()
+ self.backbone = timm.create_model(config['model']['backbone'], pretrained=pretrained)
+ self.embedder = timm.create_model(config['model']['embedder'], pretrained=pretrained)
+ self.backbone.patch_embed = HybridEmbed(self.embedder, img_size=config['img_size'], embed_dim=768)
+
+ self.num_features = self.backbone.head.fc.out_features * 2
+ self.fc = nn.Linear(self.num_features, self.num_features//4)
+ self.fc2 = nn.Linear(self.num_features//4, 2)
+ self.relu = nn.GELU()
+
+ def forward(self, images):
+
+ encimg = self.encoder(images)
+ decimg = self.decoder(encimg)
+
+ x1 = self.backbone(decimg)
+ x2 = self.backbone(images)
+
+ x = torch.cat((x1,x2), dim=1)
+
+ x = self.fc2(self.relu(self.fc(self.relu(x))))
+
+ return x
\ No newline at end of file
diff --git a/model/genconvit_vae.py b/model/genconvit_vae.py
new file mode 100644
index 0000000000000000000000000000000000000000..68c8ce5812e9e74f7e111c890295af133f0d3bdc
--- /dev/null
+++ b/model/genconvit_vae.py
@@ -0,0 +1,116 @@
+import torch
+import torch.nn as nn
+from torchvision import transforms
+from timm import create_model
+from model.config import load_config
+from .model_embedder import HybridEmbed
+
+config = load_config()
+
+class Encoder(nn.Module):
+
+ def __init__(self, latent_dims=4):
+ super(Encoder, self).__init__()
+
+ self.features = nn.Sequential(
+ nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1),
+ nn.BatchNorm2d(num_features=16),
+ nn.LeakyReLU(),
+
+ nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
+ nn.BatchNorm2d(num_features=32),
+ nn.LeakyReLU(),
+
+ nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
+ nn.BatchNorm2d(num_features=64),
+ nn.LeakyReLU(),
+
+ nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
+ nn.BatchNorm2d(num_features=128),
+ nn.LeakyReLU()
+ )
+
+ self.latent_dims = latent_dims
+ self.fc1 = nn.Linear(128*14*14, 256)
+ self.fc2 = nn.Linear(256, 128)
+ self.mu = nn.Linear(128*14*14, self.latent_dims)
+ self.var = nn.Linear(128*14*14, self.latent_dims)
+
+ self.kl = 0
+ self.kl_weight = 0.5#0.00025
+ self.relu = nn.LeakyReLU()
+
+ def reparameterize(self, x):
+ # https://github.com/AntixK/PyTorch-VAE/blob/a6896b944c918dd7030e7d795a8c13e5c6345ec7/models/vanilla_vae.py
+ std = torch.exp(0.5*self.mu(x))
+ eps = torch.randn_like(std)
+ z = eps * std + self.mu(x)
+
+ return z, std
+
+ def forward(self, x):
+ x = self.features(x)
+ x = torch.flatten(x, start_dim=1)
+
+ mu = self.mu(x)
+ var = self.var(x)
+ z,_ = self.reparameterize(x)
+ self.kl = self.kl_weight*torch.mean(-0.5*torch.sum(1+var - mu**2 - var.exp(), dim=1), dim=0)
+
+ return z
+
+class Decoder(nn.Module):
+
+ def __init__(self, latent_dims=4):
+ super(Decoder, self).__init__()
+
+ self.features = nn.Sequential(
+ nn.ConvTranspose2d(256, 64, kernel_size=2, stride=2),
+ nn.LeakyReLU(),
+
+ nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2),
+ nn.LeakyReLU(),
+
+ nn.ConvTranspose2d(32, 16, kernel_size=2, stride=2),
+ nn.LeakyReLU(),
+
+ nn.ConvTranspose2d(16, 3, kernel_size=2, stride=2),
+ nn.LeakyReLU()
+ )
+
+ self.latent_dims = latent_dims
+
+ self.unflatten = nn.Unflatten(dim=1, unflattened_size=(256, 7, 7))
+
+ def forward(self, x):
+ x = self.unflatten(x)
+ x = self.features(x)
+ return x
+
+class GenConViTVAE(nn.Module):
+ def __init__(self, config, pretrained=True):
+ super(GenConViTVAE, self).__init__()
+ self.latent_dims = config['model']['latent_dims']
+ self.encoder = Encoder(self.latent_dims)
+ self.decoder = Decoder(self.latent_dims)
+ self.embedder = create_model(config['model']['embedder'], pretrained=True)
+ self.convnext_backbone = create_model(config['model']['backbone'], pretrained=True, num_classes=1000, drop_path_rate=0, head_init_scale=1.0)
+ self.convnext_backbone.patch_embed = HybridEmbed(self.embedder, img_size=config['img_size'], embed_dim=768)
+ self.num_feature = self.convnext_backbone.head.fc.out_features * 2
+
+ self.fc = nn.Linear(self.num_feature, self.num_feature//4)
+ self.fc3 = nn.Linear(self.num_feature//2, self.num_feature//4)
+ self.fc2 = nn.Linear(self.num_feature//4, config['num_classes'])
+ self.relu = nn.ReLU()
+ self.resize = transforms.Resize((224,224), antialias=True)
+
+ def forward(self, x):
+ z = self.encoder(x)
+ x_hat = self.decoder(z)
+
+ x1 = self.convnext_backbone(x)
+ x2 = self.convnext_backbone(x_hat)
+ x = torch.cat((x1,x2), dim=1)
+ x = self.fc2(self.relu(self.fc(self.relu(x))))
+
+ return x, self.resize(x_hat)
\ No newline at end of file
diff --git a/model/model_embedder.py b/model/model_embedder.py
new file mode 100644
index 0000000000000000000000000000000000000000..8a66881ef3b83f9deeeb0d19cb4606e2c76f22b7
--- /dev/null
+++ b/model/model_embedder.py
@@ -0,0 +1,44 @@
+import torch
+import torch.nn as nn
+
+class HybridEmbed(nn.Module):
+ """ CNN Feature Map Embedding
+ Extract feature map from CNN, flatten, project to embedding dim.
+ """
+ def __init__(self, backbone, img_size=224, patch_size=1, feature_size=None, in_chans=3, embed_dim=768):
+ super().__init__()
+ assert isinstance(backbone, nn.Module)
+ img_size = (img_size, img_size)
+ patch_size = (patch_size, patch_size)
+ self.img_size = img_size
+ self.patch_size = patch_size
+ self.backbone = backbone
+ if feature_size is None:
+ with torch.no_grad():
+ # NOTE Most reliable way of determining output dims is to run forward pass
+ training = backbone.training
+ if training:
+ backbone.eval()
+ o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
+ if isinstance(o, (list, tuple)):
+ o = o[-1] # last feature if backbone outputs list/tuple of features
+ feature_size = o.shape[-2:]
+ feature_dim = o.shape[1]
+ backbone.train(training)
+ else:
+ feature_size = (feature_size, feature_size)
+ if hasattr(self.backbone, 'feature_info'):
+ feature_dim = self.backbone.feature_info.channels()[-1]
+ else:
+ feature_dim = self.backbone.num_features
+ assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0
+ self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1])
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
+ self.proj = nn.Conv2d(feature_dim, embed_dim, kernel_size=patch_size, stride=patch_size)
+
+ def forward(self, x):
+ x = self.backbone(x)
+ if isinstance(x, (list, tuple)):
+ x = x[-1] # last feature if backbone outputs list/tuple of features
+ x = self.proj(x).flatten(2).transpose(1, 2)
+ return x
\ No newline at end of file
diff --git a/model/pred_func.py b/model/pred_func.py
new file mode 100644
index 0000000000000000000000000000000000000000..b3524c2e13874f4c9808df2b2d88192957d0e95c
--- /dev/null
+++ b/model/pred_func.py
@@ -0,0 +1,115 @@
+import os
+import numpy as np
+import cv2
+import torch
+from torchvision import transforms
+from tqdm import tqdm
+from dataset.loader import normalize_data
+from .config import load_config
+from .genconvit import GenConViT
+from decord import VideoReader, cpu
+from .face_detection import detect_faces # Import our new function
+
+device = "cuda" if torch.cuda.is_available() else "cpu"
+
+
+def load_genconvit(config, net, ed_weight, vae_weight, fp16):
+ model = GenConViT(
+ config,
+ ed=ed_weight,
+ vae=vae_weight,
+ net=net,
+ fp16=fp16
+ )
+
+ model.to(device)
+ model.eval()
+ if fp16:
+ model.half()
+
+ return model
+
+
+# Replace face_rec with our new function
+def face_rec(frames, p=None, klass=None):
+ return detect_faces(frames)
+
+
+def preprocess_frame(frame):
+ df_tensor = torch.tensor(frame, device=device).float()
+ df_tensor = df_tensor.permute((0, 3, 1, 2))
+
+ for i in range(len(df_tensor)):
+ df_tensor[i] = normalize_data()["vid"](df_tensor[i] / 255.0)
+
+ return df_tensor
+
+
+def pred_vid(df, model):
+ with torch.no_grad():
+ return max_prediction_value(torch.sigmoid(model(df).squeeze()))
+
+
+def max_prediction_value(y_pred):
+ # Finds the index and value of the maximum prediction value.
+ mean_val = torch.mean(y_pred, dim=0)
+ return (
+ torch.argmax(mean_val).item(),
+ mean_val[0].item()
+ if mean_val[0] > mean_val[1]
+ else abs(1 - mean_val[1]).item(),
+ )
+
+
+def real_or_fake(prediction):
+ return {0: "REAL", 1: "FAKE"}[prediction ^ 1]
+
+
+def extract_frames(video_file, frames_nums=15):
+ vr = VideoReader(video_file, ctx=cpu(0))
+ step_size = max(1, len(vr) // frames_nums) # Calculate the step size between frames
+ return vr.get_batch(
+ list(range(0, len(vr), step_size))[:frames_nums]
+ ).asnumpy() # seek frames with step_size
+
+
+def df_face(vid, num_frames, net):
+ img = extract_frames(vid, num_frames)
+ face, count = face_rec(img)
+ return preprocess_frame(face) if count > 0 else []
+
+
+def is_video(vid):
+ print('IS FILE', os.path.isfile(vid))
+ return os.path.isfile(vid) and vid.endswith(
+ tuple([".avi", ".mp4", ".mpg", ".mpeg", ".mov"])
+ )
+
+
+def set_result():
+ return {
+ "video": {
+ "name": [],
+ "pred": [],
+ "klass": [],
+ "pred_label": [],
+ "correct_label": [],
+ }
+ }
+
+
+def store_result(
+ result, filename, y, y_val, klass, correct_label=None, compression=None
+):
+ result["video"]["name"].append(filename)
+ result["video"]["pred"].append(y_val)
+ result["video"]["klass"].append(klass.lower())
+ result["video"]["pred_label"].append(real_or_fake(y))
+
+ if correct_label is not None:
+ result["video"]["correct_label"].append(correct_label)
+
+ if compression is not None:
+ result["video"]["compression"].append(compression)
+
+ return result
diff --git a/packages.txt b/packages.txt
new file mode 100644
index 0000000000000000000000000000000000000000..73998195adffe3ca8ca418583741d7c94077c706
--- /dev/null
+++ b/packages.txt
@@ -0,0 +1,6 @@
+build-essential
+cmake
+libopenblas-dev
+liblapack-dev
+libx11-dev
+libgtk-3-dev
\ No newline at end of file
diff --git a/pipeline_architecture.png b/pipeline_architecture.png
new file mode 100644
index 0000000000000000000000000000000000000000..d5d506515fd27da3f07976b9dc2f5635f97e174b
Binary files /dev/null and b/pipeline_architecture.png differ
diff --git a/prediction.py b/prediction.py
new file mode 100644
index 0000000000000000000000000000000000000000..a089f8a0d944890822135a5aa51ea61ae9cd71cc
--- /dev/null
+++ b/prediction.py
@@ -0,0 +1,342 @@
+import os
+import argparse
+import json
+from time import perf_counter
+from datetime import datetime
+from model.pred_func import *
+from model.config import load_config
+
+config = load_config()
+print('CONFIG')
+print(config)
+def vids(
+ ed_weight, vae_weight, root_dir="sample_prediction_data", dataset=None, num_frames=15, net=None, fp16=False
+):
+ result = set_result()
+ r = 0
+ f = 0
+ count = 0
+
+ model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
+
+ for filename in os.listdir(root_dir):
+ curr_vid = os.path.join(root_dir, filename)
+
+ try:
+ if is_video(curr_vid):
+ result, accuracy, count, pred = predict(
+ curr_vid,
+ model,
+ fp16,
+ result,
+ num_frames,
+ net,
+ "uncategorized",
+ count,
+ )
+ f, r = (f + 1, r) if "FAKE" == real_or_fake(pred[0]) else (f, r + 1)
+ print(
+ f"Prediction: {pred[1]} {real_or_fake(pred[0])} \t\tFake: {f} Real: {r}"
+ )
+ else:
+ print(f"Invalid video file: {curr_vid}. Please provide a valid video file.")
+
+ except Exception as e:
+ print(f"An error occurred: {str(e)}")
+
+ return result
+
+
+def faceforensics(
+ ed_weight, vae_weight, root_dir="FaceForensics\\data", dataset=None, num_frames=15, net=None, fp16=False
+):
+ vid_type = ["original_sequences", "manipulated_sequences"]
+ result = set_result()
+ result["video"]["compression"] = []
+ ffdirs = [
+ "DeepFakeDetection",
+ "Deepfakes",
+ "Face2Face",
+ "FaceSwap",
+ "NeuralTextures",
+ ]
+
+ # load files not used in the training set, the files are appended with compression type, _c23 or _c40
+ with open(os.path.join("json_file", "ff_file_list.json")) as j_file:
+ ff_file = list(json.load(j_file))
+
+ count = 0
+ accuracy = 0
+ model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
+
+ for v_t in vid_type:
+ for dirpath, dirnames, filenames in os.walk(os.path.join(root_dir, v_t)):
+ klass = next(
+ filter(lambda x: x in dirpath.split(os.path.sep), ffdirs),
+ "original",
+ )
+ label = "REAL" if klass == "original" else "FAKE"
+ for filename in filenames:
+ try:
+ if filename in ff_file:
+ curr_vid = os.path.join(dirpath, filename)
+ compression = "c23" if "c23" in curr_vid else "c40"
+ if is_video(curr_vid):
+ result, accuracy, count, _ = predict(
+ curr_vid,
+ model,
+ fp16,
+ result,
+ num_frames,
+ net,
+ klass,
+ count,
+ accuracy,
+ label,
+ compression,
+ )
+ else:
+ print(f"Invalid video file: {curr_vid}. Please provide a valid video file.")
+
+ except Exception as e:
+ print(f"An error occurred: {str(e)}")
+
+ return result
+
+
+def timit(ed_weight, vae_weight, root_dir="DeepfakeTIMIT", dataset=None, num_frames=15, net=None, fp16=False):
+ keywords = ["higher_quality", "lower_quality"]
+ result = set_result()
+ model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
+ count = 0
+ accuracy = 0
+ i = 0
+ for keyword in keywords:
+ keyword_folder_path = os.path.join(root_dir, keyword)
+ for subfolder_name in os.listdir(keyword_folder_path):
+ subfolder_path = os.path.join(keyword_folder_path, subfolder_name)
+ if os.path.isdir(subfolder_path):
+ # Loop through the AVI files in the subfolder
+ for filename in os.listdir(subfolder_path):
+ if filename.endswith(".avi"):
+ curr_vid = os.path.join(subfolder_path, filename)
+ try:
+ if is_video(curr_vid):
+ result, accuracy, count, _ = predict(
+ curr_vid,
+ model,
+ fp16,
+ result,
+ num_frames,
+ net,
+ "DeepfakeTIMIT",
+ count,
+ accuracy,
+ "FAKE",
+ )
+ else:
+ print(f"Invalid video file: {curr_vid}. Please provide a valid video file.")
+
+ except Exception as e:
+ print(f"An error occurred: {str(e)}")
+
+ return result
+
+
+def dfdc(
+ ed_weight,
+ vae_weight,
+ root_dir="deepfake-detection-challenge\\train_sample_videos",
+ dataset=None,
+ num_frames=15,
+ net=None,
+ fp16=False,
+):
+ result = set_result()
+ if os.path.isfile(os.path.join("json_file", "dfdc_files.json")):
+ with open(os.path.join("json_file", "dfdc_files.json")) as data_file:
+ dfdc_data = json.load(data_file)
+
+ if os.path.isfile(os.path.join(root_dir, "metadata.json")):
+ with open(os.path.join(root_dir, "metadata.json")) as data_file:
+ dfdc_meta = json.load(data_file)
+ model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
+ count = 0
+ accuracy = 0
+ for dfdc in dfdc_data:
+ dfdc_file = os.path.join(root_dir, dfdc)
+
+ try:
+ if is_video(dfdc_file):
+ result, accuracy, count, _ = predict(
+ dfdc_file,
+ model,
+ fp16,
+ result,
+ num_frames,
+ net,
+ "dfdc",
+ count,
+ accuracy,
+ dfdc_meta[dfdc]["label"],
+ )
+ else:
+ print(f"Invalid video file: {dfdc_file}. Please provide a valid video file.")
+
+ except Exception as e:
+ print(f"An error occurred: {str(e)}")
+
+ return result
+
+
+def celeb(ed_weight, vae_weight, root_dir="Celeb-DF-v2", dataset=None, num_frames=15, net=None, fp16=False):
+ with open(os.path.join("json_file", "celeb_test.json"), "r") as f:
+ cfl = json.load(f)
+ result = set_result()
+ ky = ["Celeb-real", "Celeb-synthesis"]
+ count = 0
+ accuracy = 0
+ model = load_genconvit(config, net, ed_weight, vae_weight, fp16)
+
+ for ck in cfl:
+ ck_ = ck.split("/")
+ klass = ck_[0]
+ filename = ck_[1]
+ correct_label = "FAKE" if klass == "Celeb-synthesis" else "REAL"
+ vid = os.path.join(root_dir, ck)
+
+ try:
+ if is_video(vid):
+ result, accuracy, count, _ = predict(
+ vid,
+ model,
+ fp16,
+ result,
+ num_frames,
+ net,
+ klass,
+ count,
+ accuracy,
+ correct_label,
+ )
+ else:
+ print(f"Invalid video file: {vid}. Please provide a valid video file.")
+
+ except Exception as e:
+ print(f"An error occurred x: {str(e)}")
+
+ return result
+
+
+def predict(
+ vid,
+ model,
+ fp16,
+ result,
+ num_frames,
+ net,
+ klass,
+ count=0,
+ accuracy=-1,
+ correct_label="unknown",
+ compression=None,
+):
+ count += 1
+ print(f"\n\n{str(count)} Loading... {vid}")
+
+ df = df_face(vid, num_frames, net) # extract face from the frames
+ if fp16:
+ df.half()
+ y, y_val = (
+ pred_vid(df, model)
+ if len(df) >= 1
+ else (torch.tensor(0).item(), torch.tensor(0.5).item())
+ )
+ result = store_result(
+ result, os.path.basename(vid), y, y_val, klass, correct_label, compression
+ )
+
+ if accuracy > -1:
+ if correct_label == real_or_fake(y):
+ accuracy += 1
+ print(
+ f"\nPrediction: {y_val} {real_or_fake(y)} \t\t {accuracy}/{count} {accuracy/count}"
+ )
+
+ return result, accuracy, count, [y, y_val]
+
+
+def gen_parser():
+ parser = argparse.ArgumentParser("GenConViT prediction")
+ parser.add_argument("--p", type=str, help="video or image path")
+ parser.add_argument(
+ "--f", type=int, help="number of frames to process for prediction"
+ )
+ parser.add_argument(
+ "--d", type=str, help="dataset type, dfdc, faceforensics, timit, celeb"
+ )
+ parser.add_argument(
+ "--s", help="model size type: tiny, large.",
+ )
+ parser.add_argument(
+ "--e", nargs='?', const='genconvit_ed_inference', default='genconvit_ed_inference', help="weight for ed.",
+ )
+ parser.add_argument(
+ "--v", '--value', nargs='?', const='genconvit_vae_inference', default='genconvit_vae_inference', help="weight for vae.",
+ )
+
+ parser.add_argument("--fp16", type=str, help="half precision support")
+
+ args = parser.parse_args()
+ path = args.p
+ num_frames = args.f if args.f else 15
+ dataset = args.d if args.d else "other"
+ fp16 = True if args.fp16 else False
+
+ net = 'genconvit'
+ ed_weight = 'genconvit_ed_inference'
+ vae_weight = 'genconvit_vae_inference'
+
+ if args.e and args.v:
+ ed_weight = args.e
+ vae_weight = args.v
+ elif args.e:
+ net = 'ed'
+ ed_weight = args.e
+ elif args.v:
+ net = 'vae'
+ vae_weight = args.v
+
+
+ print(f'\nUsing {net}\n')
+
+
+ if args.s:
+ if args.s in ['tiny', 'large']:
+ config["model"]["backbone"] = f"convnext_{args.s}"
+ config["model"]["embedder"] = f"swin_{args.s}_patch4_window7_224"
+ config["model"]["type"] = args.s
+
+ return path, dataset, num_frames, net, fp16, ed_weight, vae_weight
+
+
+def main():
+ start_time = perf_counter()
+ path, dataset, num_frames, net, fp16, ed_weight, vae_weight = gen_parser()
+ result = (
+ globals()[dataset](ed_weight, vae_weight, path, dataset, num_frames, net, fp16)
+ if dataset in ["dfdc", "faceforensics", "timit", "celeb"]
+ else vids(ed_weight, vae_weight, path, dataset, num_frames, net, fp16)
+ )
+
+ curr_time = datetime.now().strftime("%B_%d_%Y_%H_%M_%S")
+ file_path = os.path.join("result", f"prediction_{dataset}_{net}_{curr_time}.json")
+
+ with open(file_path, "w") as f:
+ json.dump(result, f)
+ end_time = perf_counter()
+ print("\n\n--- %s seconds ---" % (end_time - start_time))
+
+
+if __name__ == "__main__":
+ main()
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c36a3fe5ddf15205e911ea346da12a7b659e132a
Binary files /dev/null and b/requirements.txt differ
diff --git a/result/data_april11_DeepfakeTIMIT.json b/result/data_april11_DeepfakeTIMIT.json
new file mode 100644
index 0000000000000000000000000000000000000000..ad34a3b5941078a6aec3e6d357cb6106f7668439
--- /dev/null
+++ b/result/data_april11_DeepfakeTIMIT.json
@@ -0,0 +1 @@
+{"video": {"name": ["sa1-video-fram1.avi", "sa2-video-fram1.avi", "si1279-video-fram1.avi", "si1909-video-fram1.avi", "si649-video-fram1.avi", "sx109-video-fram1.avi", "sx19-video-fram1.avi", "sx199-video-fram1.avi", "sx289-video-fram1.avi", "sx379-video-fram1.avi", "sa1-video-fedw0.avi", "sa2-video-fedw0.avi", "si1573-video-fedw0.avi", "si2203-video-fedw0.avi", "si943-video-fedw0.avi", "sx133-video-fedw0.avi", "sx223-video-fedw0.avi", "sx313-video-fedw0.avi", "sx403-video-fedw0.avi", "sx43-video-fedw0.avi", "sa1-video-fdrd1.avi", "sa2-video-fdrd1.avi", "si1178-video-fdrd1.avi", "si1808-video-fdrd1.avi", "si548-video-fdrd1.avi", "sx188-video-fdrd1.avi", "sx278-video-fdrd1.avi", "sx368-video-fdrd1.avi", "sx8-video-fdrd1.avi", "sx98-video-fdrd1.avi", "sa1-video-fjre0.avi", "sa2-video-fjre0.avi", "si1454-video-fjre0.avi", "si2084-video-fjre0.avi", "si824-video-fjre0.avi", "sx104-video-fjre0.avi", "sx14-video-fjre0.avi", "sx194-video-fjre0.avi", "sx284-video-fjre0.avi", "sx374-video-fjre0.avi", "sa1-video-felc0.avi", "sa2-video-felc0.avi", "si1474-video-felc0.avi", "si2104-video-felc0.avi", "si844-video-felc0.avi", "sx124-video-felc0.avi", "sx214-video-felc0.avi", "sx304-video-felc0.avi", "sx34-video-felc0.avi", "sx394-video-felc0.avi", "sa1-video-fcft0.avi", "sa2-video-fcft0.avi", "si1544-video-fcft0.avi", "si1566-video-fcft0.avi", "si2149-video-fcft0.avi", "sx104-video-fcft0.avi", "sx14-video-fcft0.avi", "sx194-video-fcft0.avi", "sx284-video-fcft0.avi", "sx374-video-fcft0.avi", "sa1-video-faks0.avi", "sa2-video-faks0.avi", "si1084-video-faks0.avi", "si1653-video-faks0.avi", "si1714-video-faks0.avi", "sx184-video-faks0.avi", "sx274-video-faks0.avi", "sx364-video-faks0.avi", "sx4-video-faks0.avi", "sx94-video-faks0.avi", "sa1-video-fdac1.avi", "sa2-video-fdac1.avi", "si1386-video-fdac1.avi", "si2016-video-fdac1.avi", "si756-video-fdac1.avi", "sx126-video-fdac1.avi", "sx216-video-fdac1.avi", "sx306-video-fdac1.avi", "sx36-video-fdac1.avi", "sx396-video-fdac1.avi", "sa1-video-fjwb0.avi", "sa2-video-fjwb0.avi", "si1400-video-fjwb0.avi", "si2030-video-fjwb0.avi", "si770-video-fjwb0.avi", "sx140-video-fjwb0.avi", "sx230-video-fjwb0.avi", "sx320-video-fjwb0.avi", "sx410-video-fjwb0.avi", "sx50-video-fjwb0.avi", "sa1-video-fkms0.avi", "sa2-video-fkms0.avi", "si1264-video-fkms0.avi", "si1894-video-fkms0.avi", "si634-video-fkms0.avi", "sx184-video-fkms0.avi", "sx274-video-fkms0.avi", "sx364-video-fkms0.avi", "sx4-video-fkms0.avi", "sx94-video-fkms0.avi", "sa1-video-fcmh0.avi", "sa2-video-fcmh0.avi", "si1116-video-fcmh0.avi", "si1587-video-fcmh0.avi", "si1746-video-fcmh0.avi", "sx126-video-fcmh0.avi", "sx216-video-fcmh0.avi", "sx306-video-fcmh0.avi", "sx36-video-fcmh0.avi", "sx396-video-fcmh0.avi", "sa1-video-fjas0.avi", "sa2-video-fjas0.avi", "si1265-video-fjas0.avi", "si635-video-fjas0.avi", "si992-video-fjas0.avi", "sx185-video-fjas0.avi", "sx275-video-fjas0.avi", "sx365-video-fjas0.avi", "sx5-video-fjas0.avi", "sx95-video-fjas0.avi", "sa1-video-fjem0.avi", "sa2-video-fjem0.avi", "si1490-video-fjem0.avi", "si2120-video-fjem0.avi", "si860-video-fjem0.avi", "sx140-video-fjem0.avi", "sx230-video-fjem0.avi", "sx320-video-fjem0.avi", "sx410-video-fjem0.avi", "sx50-video-fjem0.avi", "sa1-video-fadg0.avi", "sa2-video-fadg0.avi", "si1360-video-fadg0.avi", "si522-video-fadg0.avi", "si730-video-fadg0.avi", "sx10-video-fadg0.avi", "sx100-video-fadg0.avi", "sx190-video-fadg0.avi", "sx280-video-fadg0.avi", "sx370-video-fadg0.avi", "sa1-video-mmdm2.avi", "sa2-video-mmdm2.avi", "si1469-video-mmdm2.avi", "si2099-video-mmdm2.avi", "si839-video-mmdm2.avi", "sx119-video-mmdm2.avi", "sx209-video-mmdm2.avi", "sx29-video-mmdm2.avi", "sx299-video-mmdm2.avi", "sx389-video-mmdm2.avi", "sa1-video-mdld0.avi", "sa2-video-mdld0.avi", "si1398-video-mdld0.avi", "si2028-video-mdld0.avi", "si768-video-mdld0.avi", "sx138-video-mdld0.avi", "sx228-video-mdld0.avi", "sx318-video-mdld0.avi", "sx408-video-mdld0.avi", "sx48-video-mdld0.avi", "sa1-video-mpdf0.avi", "sa2-video-mpdf0.avi", "si1039-video-mpdf0.avi", "si1669-video-mpdf0.avi", "si2299-video-mpdf0.avi", "sx139-video-mpdf0.avi", "sx229-video-mpdf0.avi", "sx319-video-mpdf0.avi", "sx409-video-mpdf0.avi", "sx49-video-mpdf0.avi", "sa1-video-mrcz0.avi", "sa2-video-mrcz0.avi", "si1825-video-mrcz0.avi", "si565-video-mrcz0.avi", "sx115-video-mrcz0.avi", "sx1195-video-mrcz0.avi", "sx205-video-mrcz0.avi", "sx25-video-mrcz0.avi", "sx295-video-mrcz0.avi", "sx385-video-mrcz0.avi", "sa1-video-mcem0.avi", "sa2-video-mcem0.avi", "si1543-video-mcem0.avi", "si2173-video-mcem0.avi", "si913-video-mcem0.avi", "sx103-video-mcem0.avi", "sx13-video-mcem0.avi", "sx193-video-mcem0.avi", "sx283-video-mcem0.avi", "sx373-video-mcem0.avi", "sa1-video-mjar0.avi", "sa2-video-mjar0.avi", "si1539-video-mjar0.avi", "si2169-video-mjar0.avi", "si909-video-mjar0.avi", "sx189-video-mjar0.avi", "sx279-video-mjar0.avi", "sx369-video-mjar0.avi", "sx9-video-mjar0.avi", "sx99-video-mjar0.avi", "sa1-video-mgwt0.avi", "sa2-video-mgwt0.avi", "si1988-video-mgwt0.avi", "si2247-video-mgwt0.avi", "si728-video-mgwt0.avi", "sx188-video-mgwt0.avi", "sx278-video-mgwt0.avi", "sx368-video-mgwt0.avi", "sx8-video-mgwt0.avi", "sx98-video-mgwt0.avi", "sa1-video-mmdb1.avi", "sa2-video-mmdb1.avi", "si1010-video-mmdb1.avi", "si1640-video-mmdb1.avi", "si2270-video-mmdb1.avi", "sx110-video-mmdb1.avi", "sx20-video-mmdb1.avi", "sx200-video-mmdb1.avi", "sx290-video-mmdb1.avi", "sx380-video-mmdb1.avi", "sa1-video-mjsw0.avi", "sa2-video-mjsw0.avi", "si2255-video-mjsw0.avi", "si995-video-mjsw0.avi", "sx1625-video-mjsw0.avi", "sx185-video-mjsw0.avi", "sx275-video-mjsw0.avi", "sx365-video-mjsw0.avi", "sx5-video-mjsw0.avi", "sx95-video-mjsw0.avi", "sa1-video-mccs0.avi", "sa2-video-mccs0.avi", "si1425-video-mccs0.avi", "si1555-video-mccs0.avi", "si2028-video-mccs0.avi", "sx102-video-mccs0.avi", "sx12-video-mccs0.avi", "sx192-video-mccs0.avi", "sx282-video-mccs0.avi", "sx372-video-mccs0.avi", "sa1-video-mdab0.avi", "sa2-video-mdab0.avi", "si1542-video-mdab0.avi", "si2172-video-mdab0.avi", "si912-video-mdab0.avi", "sx102-video-mdab0.avi", "sx12-video-mdab0.avi", "sx192-video-mdab0.avi", "sx282-video-mdab0.avi", "sx372-video-mdab0.avi", "sa1-video-mwbt0.avi", "sa2-video-mwbt0.avi", "si1099-video-mwbt0.avi", "si1729-video-mwbt0.avi", "si469-video-mwbt0.avi", "sx109-video-mwbt0.avi", "sx19-video-mwbt0.avi", "sx199-video-mwbt0.avi", "sx289-video-mwbt0.avi", "sx379-video-mwbt0.avi", "sa1-video-mdbb0.avi", "sa2-video-mdbb0.avi", "si1541-video-mdbb0.avi", "si2171-video-mdbb0.avi", "si911-video-mdbb0.avi", "sx101-video-mdbb0.avi", "sx11-video-mdbb0.avi", "sx191-video-mdbb0.avi", "sx281-video-mdbb0.avi", "sx371-video-mdbb0.avi", "sa1-video-msjs1.avi", "sa2-video-msjs1.avi", "si1199-video-msjs1.avi", "si1829-video-msjs1.avi", "si569-video-msjs1.avi", "sx119-video-msjs1.avi", "sx209-video-msjs1.avi", "sx29-video-msjs1.avi", "sx299-video-msjs1.avi", "sx389-video-msjs1.avi", "sa1-video-mstk0.avi", "sa2-video-mstk0.avi", "si1364-video-mstk0.avi", "si1624-video-mstk0.avi", "si734-video-mstk0.avi", "sx104-video-mstk0.avi", "sx14-video-mstk0.avi", "sx194-video-mstk0.avi", "sx284-video-mstk0.avi", "sx374-video-mstk0.avi", "sa1-video-mrgg0.avi", "sa2-video-mrgg0.avi", "si1899-video-mrgg0.avi", "si639-video-mrgg0.avi", "si869-video-mrgg0.avi", "sx189-video-mrgg0.avi", "sx279-video-mrgg0.avi", "sx369-video-mrgg0.avi", "sx9-video-mrgg0.avi", "sx99-video-mrgg0.avi", "sa1-video-mrjo0.avi", "sa2-video-mrjo0.avi", "si1024-video-mrjo0.avi", "si2222-video-mrjo0.avi", "si2284-video-mrjo0.avi", "sx124-video-mrjo0.avi", "sx214-video-mrjo0.avi", "sx304-video-mrjo0.avi", "sx34-video-mrjo0.avi", "sx394-video-mrjo0.avi", "sa1-video-mpgl0.avi", "sa2-video-mpgl0.avi", "si1553-video-mpgl0.avi", "si2183-video-mpgl0.avi", "si923-video-mpgl0.avi", "sx113-video-mpgl0.avi", "sx203-video-mpgl0.avi", "sx23-video-mpgl0.avi", "sx293-video-mpgl0.avi", "sx383-video-mpgl0.avi", "sa1-video-fram1.avi", "sa2-video-fram1.avi", "si1279-video-fram1.avi", "si1909-video-fram1.avi", "si649-video-fram1.avi", "sx109-video-fram1.avi", "sx19-video-fram1.avi", "sx199-video-fram1.avi", "sx289-video-fram1.avi", "sx379-video-fram1.avi", "sa1-video-fedw0.avi", "sa2-video-fedw0.avi", "si1573-video-fedw0.avi", "si2203-video-fedw0.avi", "si943-video-fedw0.avi", "sx133-video-fedw0.avi", "sx223-video-fedw0.avi", "sx313-video-fedw0.avi", "sx403-video-fedw0.avi", "sx43-video-fedw0.avi", "sa1-video-fdrd1.avi", "sa2-video-fdrd1.avi", "si1178-video-fdrd1.avi", "si1808-video-fdrd1.avi", "si548-video-fdrd1.avi", "sx188-video-fdrd1.avi", "sx278-video-fdrd1.avi", "sx368-video-fdrd1.avi", "sx8-video-fdrd1.avi", "sx98-video-fdrd1.avi", "sa1-video-fjre0.avi", "sa2-video-fjre0.avi", "si1454-video-fjre0.avi", "si2084-video-fjre0.avi", "si824-video-fjre0.avi", "sx104-video-fjre0.avi", "sx14-video-fjre0.avi", "sx194-video-fjre0.avi", "sx284-video-fjre0.avi", "sx374-video-fjre0.avi", "sa1-video-felc0.avi", "sa2-video-felc0.avi", "si1474-video-felc0.avi", "si2104-video-felc0.avi", "si844-video-felc0.avi", "sx124-video-felc0.avi", "sx214-video-felc0.avi", "sx304-video-felc0.avi", "sx34-video-felc0.avi", "sx394-video-felc0.avi", "sa1-video-fcft0.avi", "sa2-video-fcft0.avi", "si1544-video-fcft0.avi", "si1566-video-fcft0.avi", "si2149-video-fcft0.avi", "sx104-video-fcft0.avi", "sx14-video-fcft0.avi", "sx194-video-fcft0.avi", "sx284-video-fcft0.avi", "sx374-video-fcft0.avi", "sa1-video-faks0.avi", "sa2-video-faks0.avi", "si1084-video-faks0.avi", "si1653-video-faks0.avi", "si1714-video-faks0.avi", "sx184-video-faks0.avi", "sx274-video-faks0.avi", "sx364-video-faks0.avi", "sx4-video-faks0.avi", "sx94-video-faks0.avi", "sa1-video-fdac1.avi", "sa2-video-fdac1.avi", "si1386-video-fdac1.avi", "si2016-video-fdac1.avi", "si756-video-fdac1.avi", "sx126-video-fdac1.avi", "sx216-video-fdac1.avi", "sx306-video-fdac1.avi", "sx36-video-fdac1.avi", "sx396-video-fdac1.avi", "sa1-video-fjwb0.avi", "sa2-video-fjwb0.avi", "si1400-video-fjwb0.avi", "si2030-video-fjwb0.avi", "si770-video-fjwb0.avi", "sx140-video-fjwb0.avi", "sx230-video-fjwb0.avi", "sx320-video-fjwb0.avi", "sx410-video-fjwb0.avi", "sx50-video-fjwb0.avi", "sa1-video-fkms0.avi", "sa2-video-fkms0.avi", "si1264-video-fkms0.avi", "si1894-video-fkms0.avi", "si634-video-fkms0.avi", "sx184-video-fkms0.avi", "sx274-video-fkms0.avi", "sx364-video-fkms0.avi", "sx4-video-fkms0.avi", "sx94-video-fkms0.avi", "sa1-video-fcmh0.avi", "sa2-video-fcmh0.avi", "si1116-video-fcmh0.avi", "si1587-video-fcmh0.avi", "si1746-video-fcmh0.avi", "sx126-video-fcmh0.avi", "sx216-video-fcmh0.avi", "sx306-video-fcmh0.avi", "sx36-video-fcmh0.avi", "sx396-video-fcmh0.avi", "sa1-video-fjas0.avi", "sa2-video-fjas0.avi", "si1265-video-fjas0.avi", "si635-video-fjas0.avi", "si992-video-fjas0.avi", "sx185-video-fjas0.avi", "sx275-video-fjas0.avi", "sx365-video-fjas0.avi", "sx5-video-fjas0.avi", "sx95-video-fjas0.avi", "sa1-video-fjem0.avi", "sa2-video-fjem0.avi", "si1490-video-fjem0.avi", "si2120-video-fjem0.avi", "si860-video-fjem0.avi", "sx140-video-fjem0.avi", "sx230-video-fjem0.avi", "sx320-video-fjem0.avi", "sx410-video-fjem0.avi", "sx50-video-fjem0.avi", "sa1-video-fadg0.avi", "sa2-video-fadg0.avi", "si1360-video-fadg0.avi", "si522-video-fadg0.avi", "si730-video-fadg0.avi", "sx10-video-fadg0.avi", "sx100-video-fadg0.avi", "sx190-video-fadg0.avi", "sx280-video-fadg0.avi", "sx370-video-fadg0.avi", "sa1-video-mmdm2.avi", "sa2-video-mmdm2.avi", "si1469-video-mmdm2.avi", "si2099-video-mmdm2.avi", "si839-video-mmdm2.avi", "sx119-video-mmdm2.avi", "sx209-video-mmdm2.avi", "sx29-video-mmdm2.avi", "sx299-video-mmdm2.avi", "sx389-video-mmdm2.avi", "sa1-video-mdld0.avi", "sa2-video-mdld0.avi", "si1398-video-mdld0.avi", "si2028-video-mdld0.avi", "si768-video-mdld0.avi", "sx138-video-mdld0.avi", "sx228-video-mdld0.avi", "sx318-video-mdld0.avi", "sx408-video-mdld0.avi", "sx48-video-mdld0.avi", "sa1-video-mpdf0.avi", "sa2-video-mpdf0.avi", "si1039-video-mpdf0.avi", "si1669-video-mpdf0.avi", "si2299-video-mpdf0.avi", "sx139-video-mpdf0.avi", "sx229-video-mpdf0.avi", "sx319-video-mpdf0.avi", "sx409-video-mpdf0.avi", "sx49-video-mpdf0.avi", "sa1-video-mrcz0.avi", "sa2-video-mrcz0.avi", "si1825-video-mrcz0.avi", "si565-video-mrcz0.avi", "sx115-video-mrcz0.avi", "sx1195-video-mrcz0.avi", "sx205-video-mrcz0.avi", "sx25-video-mrcz0.avi", "sx295-video-mrcz0.avi", "sx385-video-mrcz0.avi", "sa1-video-mcem0.avi", "sa2-video-mcem0.avi", "si1543-video-mcem0.avi", "si2173-video-mcem0.avi", "si913-video-mcem0.avi", "sx103-video-mcem0.avi", "sx13-video-mcem0.avi", "sx193-video-mcem0.avi", "sx283-video-mcem0.avi", "sx373-video-mcem0.avi", "sa1-video-mjar0.avi", "sa2-video-mjar0.avi", "si1539-video-mjar0.avi", "si2169-video-mjar0.avi", "si909-video-mjar0.avi", "sx189-video-mjar0.avi", "sx279-video-mjar0.avi", "sx369-video-mjar0.avi", "sx9-video-mjar0.avi", "sx99-video-mjar0.avi", "sa1-video-mgwt0.avi", "sa2-video-mgwt0.avi", "si1988-video-mgwt0.avi", "si2247-video-mgwt0.avi", "si728-video-mgwt0.avi", "sx188-video-mgwt0.avi", "sx278-video-mgwt0.avi", "sx368-video-mgwt0.avi", "sx8-video-mgwt0.avi", "sx98-video-mgwt0.avi", "sa1-video-mmdb1.avi", "sa2-video-mmdb1.avi", "si1010-video-mmdb1.avi", "si1640-video-mmdb1.avi", "si2270-video-mmdb1.avi", "sx110-video-mmdb1.avi", "sx20-video-mmdb1.avi", "sx200-video-mmdb1.avi", "sx290-video-mmdb1.avi", "sx380-video-mmdb1.avi", "sa1-video-mjsw0.avi", "sa2-video-mjsw0.avi", "si2255-video-mjsw0.avi", "si995-video-mjsw0.avi", "sx1625-video-mjsw0.avi", "sx185-video-mjsw0.avi", "sx275-video-mjsw0.avi", "sx365-video-mjsw0.avi", "sx5-video-mjsw0.avi", "sx95-video-mjsw0.avi", "sa1-video-mccs0.avi", "sa2-video-mccs0.avi", "si1425-video-mccs0.avi", "si1555-video-mccs0.avi", "si2028-video-mccs0.avi", "sx102-video-mccs0.avi", "sx12-video-mccs0.avi", "sx192-video-mccs0.avi", "sx282-video-mccs0.avi", "sx372-video-mccs0.avi", "sa1-video-mdab0.avi", "sa2-video-mdab0.avi", "si1542-video-mdab0.avi", "si2172-video-mdab0.avi", "si912-video-mdab0.avi", "sx102-video-mdab0.avi", "sx12-video-mdab0.avi", "sx192-video-mdab0.avi", "sx282-video-mdab0.avi", "sx372-video-mdab0.avi", "sa1-video-mwbt0.avi", "sa2-video-mwbt0.avi", "si1099-video-mwbt0.avi", "si1729-video-mwbt0.avi", "si469-video-mwbt0.avi", "sx109-video-mwbt0.avi", "sx19-video-mwbt0.avi", "sx199-video-mwbt0.avi", "sx289-video-mwbt0.avi", "sx379-video-mwbt0.avi", "sa1-video-mdbb0.avi", "sa2-video-mdbb0.avi", "si1541-video-mdbb0.avi", "si2171-video-mdbb0.avi", "si911-video-mdbb0.avi", "sx101-video-mdbb0.avi", "sx11-video-mdbb0.avi", "sx191-video-mdbb0.avi", "sx281-video-mdbb0.avi", "sx371-video-mdbb0.avi", "sa1-video-msjs1.avi", "sa2-video-msjs1.avi", "si1199-video-msjs1.avi", "si1829-video-msjs1.avi", "si569-video-msjs1.avi", "sx119-video-msjs1.avi", "sx209-video-msjs1.avi", "sx29-video-msjs1.avi", "sx299-video-msjs1.avi", "sx389-video-msjs1.avi", "sa1-video-mstk0.avi", "sa2-video-mstk0.avi", "si1364-video-mstk0.avi", "si1624-video-mstk0.avi", "si734-video-mstk0.avi", "sx104-video-mstk0.avi", "sx14-video-mstk0.avi", "sx194-video-mstk0.avi", "sx284-video-mstk0.avi", "sx374-video-mstk0.avi", "sa1-video-mrgg0.avi", "sa2-video-mrgg0.avi", "si1899-video-mrgg0.avi", "si639-video-mrgg0.avi", "si869-video-mrgg0.avi", "sx189-video-mrgg0.avi", "sx279-video-mrgg0.avi", "sx369-video-mrgg0.avi", "sx9-video-mrgg0.avi", "sx99-video-mrgg0.avi", "sa1-video-mrjo0.avi", "sa2-video-mrjo0.avi", "si1024-video-mrjo0.avi", "si2222-video-mrjo0.avi", "si2284-video-mrjo0.avi", "sx124-video-mrjo0.avi", "sx214-video-mrjo0.avi", "sx304-video-mrjo0.avi", "sx34-video-mrjo0.avi", "sx394-video-mrjo0.avi", "sa1-video-mpgl0.avi", "sa2-video-mpgl0.avi", "si1553-video-mpgl0.avi", "si2183-video-mpgl0.avi", "si923-video-mpgl0.avi", "sx113-video-mpgl0.avi", "sx203-video-mpgl0.avi", "sx23-video-mpgl0.avi", "sx293-video-mpgl0.avi", "sx383-video-mpgl0.avi", "01__exit_phone_room_actors_c23.mp4", "01__hugging_happy_actors_c23.mp4", "01__kitchen_pan_actors_c23.mp4", "01__kitchen_still_actors_c23.mp4", "01__meeting_serious_actors_c23.mp4", "01__outside_talking_pan_laughing_actors_c23.mp4", "01__outside_talking_still_laughing_actors_c23.mp4", "01__podium_speech_happy_actors_c23.mp4", "01__secret_conversation_actors_c23.mp4", "01__talking_against_wall_actors_c23.mp4", "01__talking_angry_couch_actors_c23.mp4", "01__walking_and_outside_surprised_actors_c23.mp4", "01__walking_down_indoor_hall_disgust_actors_c23.mp4", "01__walking_down_street_outside_angry_actors_c23.mp4", "01__walking_outside_cafe_disgusted_actors_c23.mp4", "01__walk_down_hall_angry_actors_c23.mp4", "02__exit_phone_room_actors_c23.mp4", "02__hugging_happy_actors_c23.mp4", "02__kitchen_pan_actors_c23.mp4", "02__kitchen_still_actors_c23.mp4", "02__meeting_serious_actors_c23.mp4", "02__outside_talking_pan_laughing_actors_c23.mp4", "02__outside_talking_still_laughing_actors_c23.mp4", "02__podium_speech_happy_actors_c23.mp4", "02__secret_conversation_actors_c23.mp4", "02__talking_against_wall_actors_c23.mp4", "02__talking_angry_couch_actors_c23.mp4", "02__walking_and_outside_surprised_actors_c23.mp4", "02__walking_down_indoor_hall_disgust_actors_c23.mp4", "02__walking_down_street_outside_angry_actors_c23.mp4", "02__walking_outside_cafe_disgusted_actors_c23.mp4", "02__walk_down_hall_angry_actors_c23.mp4", "03__exit_phone_room_actors_c23.mp4", "03__hugging_happy_actors_c23.mp4", "03__kitchen_pan_actors_c23.mp4", "03__kitchen_still_actors_c23.mp4", "03__meeting_serious_actors_c23.mp4", "03__outside_talking_pan_laughing_actors_c23.mp4", "03__outside_talking_still_laughing_actors_c23.mp4", "03__podium_speech_happy_actors_c23.mp4", "03__secret_conversation_actors_c23.mp4", "03__talking_against_wall_actors_c23.mp4", "03__talking_angry_couch_actors_c23.mp4", "03__walking_and_outside_surprised_actors_c23.mp4", "03__walking_down_indoor_hall_disgust_actors_c23.mp4", "03__walking_down_street_outside_angry_actors_c23.mp4", "03__walking_outside_cafe_disgusted_actors_c23.mp4", "03__walk_down_hall_angry_actors_c23.mp4", "04__exit_phone_room_actors_c23.mp4", "04__kitchen_pan_actors_c23.mp4", "04__kitchen_still_actors_c23.mp4", "04__outside_talking_pan_laughing_actors_c23.mp4", "04__outside_talking_still_laughing_actors_c23.mp4", "04__podium_speech_happy_actors_c23.mp4", "04__secret_conversation_actors_c23.mp4", "04__talking_against_wall_actors_c23.mp4", "04__talking_angry_couch_actors_c23.mp4", "04__walking_down_street_outside_angry_actors_c23.mp4", "04__walking_outside_cafe_disgusted_actors_c23.mp4", "04__walk_down_hall_angry_actors_c23.mp4", "05__exit_phone_room_actors_c23.mp4", "05__hugging_happy_actors_c23.mp4", "05__kitchen_pan_actors_c23.mp4", "05__kitchen_still_actors_c23.mp4", "05__outside_talking_pan_laughing_actors_c23.mp4", "05__outside_talking_still_laughing_actors_c23.mp4", "05__podium_speech_happy_actors_c23.mp4", "05__talking_against_wall_actors_c23.mp4", "05__walking_down_street_outside_angry_actors_c23.mp4", "05__walking_outside_cafe_disgusted_actors_c23.mp4", "05__walk_down_hall_angry_actors_c23.mp4", "06__exit_phone_room_actors_c23.mp4", "06__hugging_happy_actors_c23.mp4", "06__kitchen_pan_actors_c23.mp4", "06__kitchen_still_actors_c23.mp4", "06__outside_talking_pan_laughing_actors_c23.mp4", "06__outside_talking_still_laughing_actors_c23.mp4", "06__podium_speech_happy_actors_c23.mp4", "06__talking_against_wall_actors_c23.mp4", "06__talking_angry_couch_actors_c23.mp4", "06__walking_and_outside_surprised_actors_c23.mp4", "06__walking_down_indoor_hall_disgust_actors_c23.mp4", "06__walking_down_street_outside_angry_actors_c23.mp4", "06__walking_outside_cafe_disgusted_actors_c23.mp4", "06__walk_down_hall_angry_actors_c23.mp4", "07__exit_phone_room_actors_c23.mp4", "07__hugging_happy_actors_c23.mp4", "07__kitchen_pan_actors_c23.mp4", "07__kitchen_still_actors_c23.mp4", "07__outside_talking_pan_laughing_actors_c23.mp4", "07__outside_talking_still_laughing_actors_c23.mp4", "07__podium_speech_happy_actors_c23.mp4", "07__secret_conversation_actors_c23.mp4", "07__talking_against_wall_actors_c23.mp4", "07__talking_angry_couch_actors_c23.mp4", "07__walking_down_street_outside_angry_actors_c23.mp4", "07__walking_outside_cafe_disgusted_actors_c23.mp4", "07__walk_down_hall_angry_actors_c23.mp4", "08__exit_phone_room_actors_c23.mp4", "08__kitchen_pan_actors_c23.mp4", "08__kitchen_still_actors_c23.mp4", "08__outside_talking_pan_laughing_actors_c23.mp4", "08__outside_talking_still_laughing_actors_c23.mp4", "08__podium_speech_happy_actors_c23.mp4", "08__talking_against_wall_actors_c23.mp4", "08__walking_down_street_outside_angry_actors_c23.mp4", "08__walking_outside_cafe_disgusted_actors_c23.mp4", "08__walk_down_hall_angry_actors_c23.mp4", "09__exit_phone_room_actors_c23.mp4", "09__kitchen_pan_actors_c23.mp4", "09__outside_talking_pan_laughing_actors_c23.mp4", "09__outside_talking_still_laughing_actors_c23.mp4", "09__podium_speech_happy_actors_c23.mp4", "09__talking_against_wall_actors_c23.mp4", "09__talking_angry_couch_actors_c23.mp4", "09__walking_down_street_outside_angry_actors_c23.mp4", "09__walk_down_hall_angry_actors_c23.mp4", "10__exit_phone_room_actors_c23.mp4", "10__kitchen_pan_actors_c23.mp4", "10__kitchen_still_actors_c23.mp4", "10__outside_talking_pan_laughing_actors_c23.mp4", "10__outside_talking_still_laughing_actors_c23.mp4", "10__podium_speech_happy_actors_c23.mp4", "10__talking_against_wall_actors_c23.mp4", "10__talking_angry_couch_actors_c23.mp4", "10__walking_down_street_outside_angry_actors_c23.mp4", "10__walking_outside_cafe_disgusted_actors_c23.mp4", "10__walk_down_hall_angry_actors_c23.mp4", "11__exit_phone_room_actors_c23.mp4", "11__kitchen_pan_actors_c23.mp4", "11__kitchen_still_actors_c23.mp4", "11__outside_talking_pan_laughing_actors_c23.mp4", "11__outside_talking_still_laughing_actors_c23.mp4", "11__podium_speech_happy_actors_c23.mp4", "11__secret_conversation_actors_c23.mp4", "11__talking_against_wall_actors_c23.mp4", "11__talking_angry_couch_actors_c23.mp4", "11__walking_down_street_outside_angry_actors_c23.mp4", "11__walking_outside_cafe_disgusted_actors_c23.mp4", "11__walk_down_hall_angry_actors_c23.mp4", "12__exit_phone_room_actors_c23.mp4", "12__hugging_happy_actors_c23.mp4", "12__kitchen_pan_actors_c23.mp4", "12__kitchen_still_actors_c23.mp4", "12__outside_talking_pan_laughing_actors_c23.mp4", "12__outside_talking_still_laughing_actors_c23.mp4", "12__podium_speech_happy_actors_c23.mp4", "12__secret_conversation_actors_c23.mp4", "12__talking_against_wall_actors_c23.mp4", "12__talking_angry_couch_actors_c23.mp4", "12__walking_and_outside_surprised_actors_c23.mp4", "12__walking_down_indoor_hall_disgust_actors_c23.mp4", "12__walking_down_street_outside_angry_actors_c23.mp4", "12__walking_outside_cafe_disgusted_actors_c23.mp4", "12__walk_down_hall_angry_actors_c23.mp4", "13__exit_phone_room_actors_c23.mp4", "13__hugging_happy_actors_c23.mp4", "13__kitchen_pan_actors_c23.mp4", "13__kitchen_still_actors_c23.mp4", "13__outside_talking_pan_laughing_actors_c23.mp4", "13__outside_talking_still_laughing_actors_c23.mp4", "13__podium_speech_happy_actors_c23.mp4", "13__secret_conversation_actors_c23.mp4", "13__talking_against_wall_actors_c23.mp4", "13__talking_angry_couch_actors_c23.mp4", "13__walking_and_outside_surprised_actors_c23.mp4", "13__walking_down_indoor_hall_disgust_actors_c23.mp4", "13__walking_down_street_outside_angry_actors_c23.mp4", "13__walking_outside_cafe_disgusted_actors_c23.mp4", "13__walk_down_hall_angry_actors_c23.mp4", "14__exit_phone_room_actors_c23.mp4", "14__hugging_happy_actors_c23.mp4", "14__kitchen_pan_actors_c23.mp4", "14__kitchen_still_actors_c23.mp4", "14__outside_talking_pan_laughing_actors_c23.mp4", "14__outside_talking_still_laughing_actors_c23.mp4", "14__podium_speech_happy_actors_c23.mp4", "14__secret_conversation_actors_c23.mp4", "14__talking_against_wall_actors_c23.mp4", "14__talking_angry_couch_actors_c23.mp4", "14__walking_and_outside_surprised_actors_c23.mp4", "14__walking_down_indoor_hall_disgust_actors_c23.mp4", "14__walking_down_street_outside_angry_actors_c23.mp4", "14__walking_outside_cafe_disgusted_actors_c23.mp4", "14__walk_down_hall_angry_actors_c23.mp4", "15__exit_phone_room_actors_c23.mp4", "15__hugging_happy_actors_c23.mp4", "15__kitchen_pan_actors_c23.mp4", "15__kitchen_still_actors_c23.mp4", "15__outside_talking_pan_laughing_actors_c23.mp4", "15__outside_talking_still_laughing_actors_c23.mp4", "15__podium_speech_happy_actors_c23.mp4", "15__talking_against_wall_actors_c23.mp4", "15__talking_angry_couch_actors_c23.mp4", "15__walking_and_outside_surprised_actors_c23.mp4", "15__walking_down_indoor_hall_disgust_actors_c23.mp4", "15__walking_down_street_outside_angry_actors_c23.mp4", "15__walking_outside_cafe_disgusted_actors_c23.mp4", "15__walk_down_hall_angry_actors_c23.mp4", "16__exit_phone_room_actors_c23.mp4", "16__hugging_happy_actors_c23.mp4", "16__kitchen_pan_actors_c23.mp4", "16__kitchen_still_actors_c23.mp4", "16__outside_talking_pan_laughing_actors_c23.mp4", "16__podium_speech_happy_actors_c23.mp4", "16__talking_against_wall_actors_c23.mp4", "16__walking_and_outside_surprised_actors_c23.mp4", "16__walking_down_indoor_hall_disgust_actors_c23.mp4", "16__walking_down_street_outside_angry_actors_c23.mp4", "16__walking_outside_cafe_disgusted_actors_c23.mp4", "16__walk_down_hall_angry_actors_c23.mp4", "17__exit_phone_room_actors_c23.mp4", "17__hugging_happy_actors_c23.mp4", "17__kitchen_pan_actors_c23.mp4", "17__kitchen_still_actors_c23.mp4", "17__outside_talking_pan_laughing_actors_c23.mp4", "17__outside_talking_still_laughing_actors_c23.mp4", "17__podium_speech_happy_actors_c23.mp4", "17__talking_against_wall_actors_c23.mp4", "17__talking_angry_couch_actors_c23.mp4", "17__walking_and_outside_surprised_actors_c23.mp4", "17__walking_down_indoor_hall_disgust_actors_c23.mp4", "17__walking_down_street_outside_angry_actors_c23.mp4", "17__walk_down_hall_angry_actors_c23.mp4", "18__exit_phone_room_actors_c23.mp4", "18__kitchen_pan_actors_c23.mp4", "18__kitchen_still_actors_c23.mp4", "18__outside_talking_pan_laughing_actors_c23.mp4", "18__outside_talking_still_laughing_actors_c23.mp4", "18__podium_speech_happy_actors_c23.mp4", "18__secret_conversation_actors_c23.mp4", "18__talking_against_wall_actors_c23.mp4", "18__walking_down_street_outside_angry_actors_c23.mp4", "18__walking_outside_cafe_disgusted_actors_c23.mp4", "18__walk_down_hall_angry_actors_c23.mp4", "19__exit_phone_room_actors_c23.mp4", "19__kitchen_pan_actors_c23.mp4", "19__kitchen_still_actors_c23.mp4", "19__outside_talking_pan_laughing_actors_c23.mp4", "19__outside_talking_still_laughing_actors_c23.mp4", "19__podium_speech_happy_actors_c23.mp4", "19__secret_conversation_actors_c23.mp4", "19__talking_against_wall_actors_c23.mp4", "19__talking_angry_couch_actors_c23.mp4", "19__walking_down_street_outside_angry_actors_c23.mp4", "19__walking_outside_cafe_disgusted_actors_c23.mp4", "19__walk_down_hall_angry_actors_c23.mp4", "20__exit_phone_room_actors_c23.mp4", "20__hugging_happy_actors_c23.mp4", "20__kitchen_pan_actors_c23.mp4", "20__kitchen_still_actors_c23.mp4", "20__outside_talking_pan_laughing_actors_c23.mp4", "20__outside_talking_still_laughing_actors_c23.mp4", "20__podium_speech_happy_actors_c23.mp4", "20__secret_conversation_actors_c23.mp4", "20__talking_against_wall_actors_c23.mp4", "20__talking_angry_couch_actors_c23.mp4", "20__walking_and_outside_surprised_actors_c23.mp4", "20__walking_down_indoor_hall_disgust_actors_c23.mp4", "20__walking_down_street_outside_angry_actors_c23.mp4", "20__walking_outside_cafe_disgusted_actors_c23.mp4", "20__walk_down_hall_angry_actors_c23.mp4", "21__exit_phone_room_actors_c23.mp4", "21__hugging_happy_actors_c23.mp4", "21__kitchen_pan_actors_c23.mp4", "21__kitchen_still_actors_c23.mp4", "21__outside_talking_pan_laughing_actors_c23.mp4", "21__outside_talking_still_laughing_actors_c23.mp4", "21__podium_speech_happy_actors_c23.mp4", "21__talking_against_wall_actors_c23.mp4", "21__talking_angry_couch_actors_c23.mp4", "21__walking_and_outside_surprised_actors_c23.mp4", "21__walking_down_indoor_hall_disgust_actors_c23.mp4", "21__walking_down_street_outside_angry_actors_c23.mp4", "21__walking_outside_cafe_disgusted_actors_c23.mp4", "21__walk_down_hall_angry_actors_c23.mp4", "22__exit_phone_room_actors_c23.mp4", "22__kitchen_pan_actors_c23.mp4", "22__kitchen_still_actors_c23.mp4", "22__outside_talking_pan_laughing_actors_c23.mp4", "22__outside_talking_still_laughing_actors_c23.mp4", "22__podium_speech_happy_actors_c23.mp4", "22__secret_conversation_actors_c23.mp4", "22__talking_against_wall_actors_c23.mp4", "22__walking_and_outside_surprised_actors_c23.mp4", "22__walking_down_indoor_hall_disgust_actors_c23.mp4", "22__walking_down_street_outside_angry_actors_c23.mp4", "22__walking_outside_cafe_disgusted_actors_c23.mp4", "22__walk_down_hall_angry_actors_c23.mp4", "23__exit_phone_room_actors_c23.mp4", "23__hugging_happy_actors_c23.mp4", "23__kitchen_pan_actors_c23.mp4", "23__kitchen_still_actors_c23.mp4", "23__outside_talking_pan_laughing_actors_c23.mp4", "23__outside_talking_still_laughing_actors_c23.mp4", "23__podium_speech_happy_actors_c23.mp4", "23__secret_conversation_actors_c23.mp4", "23__talking_against_wall_actors_c23.mp4", "23__talking_angry_couch_actors_c23.mp4", "23__walking_and_outside_surprised_actors_c23.mp4", "23__walking_down_indoor_hall_disgust_actors_c23.mp4", "23__walking_down_street_outside_angry_actors_c23.mp4", "23__walking_outside_cafe_disgusted_actors_c23.mp4", "23__walk_down_hall_angry_actors_c23.mp4", "24__exit_phone_room_actors_c23.mp4", "24__kitchen_pan_actors_c23.mp4", "24__kitchen_still_actors_c23.mp4", "24__outside_talking_pan_laughing_actors_c23.mp4", "24__outside_talking_still_laughing_actors_c23.mp4", "24__podium_speech_happy_actors_c23.mp4", "24__secret_conversation_actors_c23.mp4", "24__talking_against_wall_actors_c23.mp4", "24__talking_angry_couch_actors_c23.mp4", "24__walking_down_street_outside_angry_actors_c23.mp4", "24__walking_outside_cafe_disgusted_actors_c23.mp4", "24__walk_down_hall_angry_actors_c23.mp4", "25__exit_phone_room_actors_c23.mp4", "25__outside_talking_pan_laughing_actors_c23.mp4", "25__outside_talking_still_laughing_actors_c23.mp4", "25__podium_speech_happy_actors_c23.mp4", "25__secret_conversation_actors_c23.mp4", "25__talking_against_wall_actors_c23.mp4", "25__walking_down_street_outside_angry_actors_c23.mp4", "25__walking_outside_cafe_disgusted_actors_c23.mp4", "25__walk_down_hall_angry_actors_c23.mp4", "26__exit_phone_room_actors_c23.mp4", "26__kitchen_pan_actors_c23.mp4", "26__kitchen_still_actors_c23.mp4", "26__outside_talking_pan_laughing_actors_c23.mp4", "26__outside_talking_still_laughing_actors_c23.mp4", "26__podium_speech_happy_actors_c23.mp4", "26__secret_conversation_actors_c23.mp4", "26__talking_against_wall_actors_c23.mp4", "26__talking_angry_couch_actors_c23.mp4", "26__walking_down_street_outside_angry_actors_c23.mp4", "26__walking_outside_cafe_disgusted_actors_c23.mp4", "26__walk_down_hall_angry_actors_c23.mp4", "27__exit_phone_room_actors_c23.mp4", "27__hugging_happy_actors_c23.mp4", "27__kitchen_pan_actors_c23.mp4", "27__kitchen_still_actors_c23.mp4", "27__meeting_serious_actors_c23.mp4", "27__outside_talking_pan_laughing_actors_c23.mp4", "27__outside_talking_still_laughing_actors_c23.mp4", "27__podium_speech_happy_actors_c23.mp4", "27__talking_against_wall_actors_c23.mp4", "27__talking_angry_couch_actors_c23.mp4", "27__walking_and_outside_surprised_actors_c23.mp4", "27__walking_down_indoor_hall_disgust_actors_c23.mp4", "27__walking_down_street_outside_angry_actors_c23.mp4", "27__walking_outside_cafe_disgusted_actors_c23.mp4", "27__walk_down_hall_angry_actors_c23.mp4", "28__exit_phone_room_actors_c23.mp4", "28__kitchen_pan_actors_c23.mp4", "28__kitchen_still_actors_c23.mp4", "28__outside_talking_pan_laughing_actors_c23.mp4", "28__outside_talking_still_laughing_actors_c23.mp4", "28__podium_speech_happy_actors_c23.mp4", "28__secret_conversation_actors_c23.mp4", "28__talking_angry_couch_actors_c23.mp4", "28__walking_down_street_outside_angry_actors_c23.mp4", "28__walking_outside_cafe_disgusted_actors_c23.mp4", "28__walk_down_hall_angry_actors_c23.mp4", "01__exit_phone_room_actors_c40.mp4", "01__hugging_happy_actors_c40.mp4", "01__kitchen_pan_actors_c40.mp4", "01__kitchen_still_actors_c40.mp4", "01__meeting_serious_actors_c40.mp4", "01__outside_talking_pan_laughing_actors_c40.mp4", "01__outside_talking_still_laughing_actors_c40.mp4", "01__podium_speech_happy_actors_c40.mp4", "01__secret_conversation_actors_c40.mp4", "01__talking_against_wall_actors_c40.mp4", "01__talking_angry_couch_actors_c40.mp4", "01__walking_and_outside_surprised_actors_c40.mp4", "01__walking_down_indoor_hall_disgust_actors_c40.mp4", "01__walking_down_street_outside_angry_actors_c40.mp4", "01__walking_outside_cafe_disgusted_actors_c40.mp4", "01__walk_down_hall_angry_actors_c40.mp4", "02__exit_phone_room_actors_c40.mp4", "02__hugging_happy_actors_c40.mp4", "02__kitchen_pan_actors_c40.mp4", "02__kitchen_still_actors_c40.mp4", "02__meeting_serious_actors_c40.mp4", "02__outside_talking_pan_laughing_actors_c40.mp4", "02__outside_talking_still_laughing_actors_c40.mp4", "02__podium_speech_happy_actors_c40.mp4", "02__secret_conversation_actors_c40.mp4", "02__talking_against_wall_actors_c40.mp4", "02__talking_angry_couch_actors_c40.mp4", "02__walking_and_outside_surprised_actors_c40.mp4", "02__walking_down_indoor_hall_disgust_actors_c40.mp4", "02__walking_down_street_outside_angry_actors_c40.mp4", "02__walking_outside_cafe_disgusted_actors_c40.mp4", "02__walk_down_hall_angry_actors_c40.mp4", "03__exit_phone_room_actors_c40.mp4", "03__hugging_happy_actors_c40.mp4", "03__kitchen_pan_actors_c40.mp4", "03__kitchen_still_actors_c40.mp4", "03__meeting_serious_actors_c40.mp4", "03__outside_talking_pan_laughing_actors_c40.mp4", "03__outside_talking_still_laughing_actors_c40.mp4", "03__podium_speech_happy_actors_c40.mp4", "03__secret_conversation_actors_c40.mp4", "03__talking_against_wall_actors_c40.mp4", "03__talking_angry_couch_actors_c40.mp4", "03__walking_and_outside_surprised_actors_c40.mp4", "03__walking_down_indoor_hall_disgust_actors_c40.mp4", "03__walking_down_street_outside_angry_actors_c40.mp4", "03__walking_outside_cafe_disgusted_actors_c40.mp4", "03__walk_down_hall_angry_actors_c40.mp4", "04__exit_phone_room_actors_c40.mp4", "04__kitchen_pan_actors_c40.mp4", "04__kitchen_still_actors_c40.mp4", "04__outside_talking_pan_laughing_actors_c40.mp4", "04__outside_talking_still_laughing_actors_c40.mp4", "04__podium_speech_happy_actors_c40.mp4", "04__secret_conversation_actors_c40.mp4", "04__talking_against_wall_actors_c40.mp4", "04__talking_angry_couch_actors_c40.mp4", "04__walking_down_street_outside_angry_actors_c40.mp4", "04__walking_outside_cafe_disgusted_actors_c40.mp4", "04__walk_down_hall_angry_actors_c40.mp4", "05__exit_phone_room_actors_c40.mp4", "05__hugging_happy_actors_c40.mp4", "05__kitchen_pan_actors_c40.mp4", "05__kitchen_still_actors_c40.mp4", "05__outside_talking_pan_laughing_actors_c40.mp4", "05__outside_talking_still_laughing_actors_c40.mp4", "05__podium_speech_happy_actors_c40.mp4", "05__talking_against_wall_actors_c40.mp4", "05__walking_down_street_outside_angry_actors_c40.mp4", "05__walking_outside_cafe_disgusted_actors_c40.mp4", "05__walk_down_hall_angry_actors_c40.mp4", "06__exit_phone_room_actors_c40.mp4", "06__hugging_happy_actors_c40.mp4", "06__kitchen_pan_actors_c40.mp4", "06__kitchen_still_actors_c40.mp4", "06__outside_talking_pan_laughing_actors_c40.mp4", "06__outside_talking_still_laughing_actors_c40.mp4", "06__podium_speech_happy_actors_c40.mp4", "06__talking_against_wall_actors_c40.mp4", "06__talking_angry_couch_actors_c40.mp4", "06__walking_and_outside_surprised_actors_c40.mp4", "06__walking_down_indoor_hall_disgust_actors_c40.mp4", "06__walking_down_street_outside_angry_actors_c40.mp4", "06__walking_outside_cafe_disgusted_actors_c40.mp4", "06__walk_down_hall_angry_actors_c40.mp4", "07__exit_phone_room_actors_c40.mp4", "07__hugging_happy_actors_c40.mp4", "07__kitchen_pan_actors_c40.mp4", "07__kitchen_still_actors_c40.mp4", "07__outside_talking_pan_laughing_actors_c40.mp4", "07__outside_talking_still_laughing_actors_c40.mp4", "07__podium_speech_happy_actors_c40.mp4", "07__secret_conversation_actors_c40.mp4", "07__talking_against_wall_actors_c40.mp4", "07__talking_angry_couch_actors_c40.mp4", "07__walking_down_street_outside_angry_actors_c40.mp4", "07__walking_outside_cafe_disgusted_actors_c40.mp4", "07__walk_down_hall_angry_actors_c40.mp4", "08__exit_phone_room_actors_c40.mp4", "08__kitchen_pan_actors_c40.mp4", "08__kitchen_still_actors_c40.mp4", "08__outside_talking_pan_laughing_actors_c40.mp4", "08__outside_talking_still_laughing_actors_c40.mp4", "08__podium_speech_happy_actors_c40.mp4", "08__talking_against_wall_actors_c40.mp4", "08__walking_down_street_outside_angry_actors_c40.mp4", "08__walking_outside_cafe_disgusted_actors_c40.mp4", "08__walk_down_hall_angry_actors_c40.mp4", "09__exit_phone_room_actors_c40.mp4", "09__kitchen_pan_actors_c40.mp4", "09__outside_talking_pan_laughing_actors_c40.mp4", "09__outside_talking_still_laughing_actors_c40.mp4", "09__podium_speech_happy_actors_c40.mp4", "09__talking_against_wall_actors_c40.mp4", "09__talking_angry_couch_actors_c40.mp4", "09__walking_down_street_outside_angry_actors_c40.mp4", "09__walk_down_hall_angry_actors_c40.mp4", "10__exit_phone_room_actors_c40.mp4", "10__kitchen_pan_actors_c40.mp4", "10__kitchen_still_actors_c40.mp4", "10__outside_talking_pan_laughing_actors_c40.mp4", "10__outside_talking_still_laughing_actors_c40.mp4", "10__podium_speech_happy_actors_c40.mp4", "10__talking_against_wall_actors_c40.mp4", "10__talking_angry_couch_actors_c40.mp4", "10__walking_down_street_outside_angry_actors_c40.mp4", "10__walking_outside_cafe_disgusted_actors_c40.mp4", "10__walk_down_hall_angry_actors_c40.mp4", "11__exit_phone_room_actors_c40.mp4", "11__kitchen_pan_actors_c40.mp4", "11__kitchen_still_actors_c40.mp4", "11__outside_talking_pan_laughing_actors_c40.mp4", "11__outside_talking_still_laughing_actors_c40.mp4", "11__podium_speech_happy_actors_c40.mp4", "11__secret_conversation_actors_c40.mp4", "11__talking_against_wall_actors_c40.mp4", "11__talking_angry_couch_actors_c40.mp4", "11__walking_down_street_outside_angry_actors_c40.mp4", "11__walking_outside_cafe_disgusted_actors_c40.mp4", "11__walk_down_hall_angry_actors_c40.mp4", "12__exit_phone_room_actors_c40.mp4", "12__hugging_happy_actors_c40.mp4", "12__kitchen_pan_actors_c40.mp4", "12__kitchen_still_actors_c40.mp4", "12__outside_talking_pan_laughing_actors_c40.mp4", "12__outside_talking_still_laughing_actors_c40.mp4", "12__podium_speech_happy_actors_c40.mp4", "12__secret_conversation_actors_c40.mp4", "12__talking_against_wall_actors_c40.mp4", "12__talking_angry_couch_actors_c40.mp4", "12__walking_and_outside_surprised_actors_c40.mp4", "12__walking_down_indoor_hall_disgust_actors_c40.mp4", "12__walking_down_street_outside_angry_actors_c40.mp4", "12__walking_outside_cafe_disgusted_actors_c40.mp4", "12__walk_down_hall_angry_actors_c40.mp4", "13__exit_phone_room_actors_c40.mp4", "13__hugging_happy_actors_c40.mp4", "13__kitchen_pan_actors_c40.mp4", "13__kitchen_still_actors_c40.mp4", "13__outside_talking_pan_laughing_actors_c40.mp4", "13__outside_talking_still_laughing_actors_c40.mp4", "13__podium_speech_happy_actors_c40.mp4", "13__secret_conversation_actors_c40.mp4", "13__talking_against_wall_actors_c40.mp4", "13__talking_angry_couch_actors_c40.mp4", "13__walking_and_outside_surprised_actors_c40.mp4", "13__walking_down_indoor_hall_disgust_actors_c40.mp4", "13__walking_down_street_outside_angry_actors_c40.mp4", "13__walking_outside_cafe_disgusted_actors_c40.mp4", "13__walk_down_hall_angry_actors_c40.mp4", "14__exit_phone_room_actors_c40.mp4", "14__hugging_happy_actors_c40.mp4", "14__kitchen_pan_actors_c40.mp4", "14__kitchen_still_actors_c40.mp4", "14__outside_talking_pan_laughing_actors_c40.mp4", "14__outside_talking_still_laughing_actors_c40.mp4", "14__podium_speech_happy_actors_c40.mp4", "14__secret_conversation_actors_c40.mp4", "14__talking_against_wall_actors_c40.mp4", "14__talking_angry_couch_actors_c40.mp4", "14__walking_and_outside_surprised_actors_c40.mp4", "14__walking_down_indoor_hall_disgust_actors_c40.mp4", "14__walking_down_street_outside_angry_actors_c40.mp4", "14__walking_outside_cafe_disgusted_actors_c40.mp4", "14__walk_down_hall_angry_actors_c40.mp4", "15__exit_phone_room_actors_c40.mp4", "15__hugging_happy_actors_c40.mp4", "15__kitchen_pan_actors_c40.mp4", "15__kitchen_still_actors_c40.mp4", "15__outside_talking_pan_laughing_actors_c40.mp4", "15__outside_talking_still_laughing_actors_c40.mp4", "15__podium_speech_happy_actors_c40.mp4", "15__talking_against_wall_actors_c40.mp4", "15__talking_angry_couch_actors_c40.mp4", "15__walking_and_outside_surprised_actors_c40.mp4", "15__walking_down_indoor_hall_disgust_actors_c40.mp4", "15__walking_down_street_outside_angry_actors_c40.mp4", "15__walking_outside_cafe_disgusted_actors_c40.mp4", "15__walk_down_hall_angry_actors_c40.mp4", "16__exit_phone_room_actors_c40.mp4", "16__hugging_happy_actors_c40.mp4", "16__kitchen_pan_actors_c40.mp4", "16__kitchen_still_actors_c40.mp4", "16__outside_talking_pan_laughing_actors_c40.mp4", "16__podium_speech_happy_actors_c40.mp4", "16__talking_against_wall_actors_c40.mp4", "16__walking_and_outside_surprised_actors_c40.mp4", "16__walking_down_indoor_hall_disgust_actors_c40.mp4", "16__walking_down_street_outside_angry_actors_c40.mp4", "16__walking_outside_cafe_disgusted_actors_c40.mp4", "16__walk_down_hall_angry_actors_c40.mp4", "17__exit_phone_room_actors_c40.mp4", "17__hugging_happy_actors_c40.mp4", "17__kitchen_pan_actors_c40.mp4", "17__kitchen_still_actors_c40.mp4", "17__outside_talking_pan_laughing_actors_c40.mp4", "17__outside_talking_still_laughing_actors_c40.mp4", "17__podium_speech_happy_actors_c40.mp4", "17__talking_against_wall_actors_c40.mp4", "17__talking_angry_couch_actors_c40.mp4", "17__walking_and_outside_surprised_actors_c40.mp4", "17__walking_down_indoor_hall_disgust_actors_c40.mp4", "17__walking_down_street_outside_angry_actors_c40.mp4", "17__walk_down_hall_angry_actors_c40.mp4", "18__exit_phone_room_actors_c40.mp4", "18__kitchen_pan_actors_c40.mp4", "18__kitchen_still_actors_c40.mp4", "18__outside_talking_pan_laughing_actors_c40.mp4", "18__outside_talking_still_laughing_actors_c40.mp4", "18__podium_speech_happy_actors_c40.mp4", "18__secret_conversation_actors_c40.mp4", "18__talking_against_wall_actors_c40.mp4", "18__walking_down_street_outside_angry_actors_c40.mp4", "18__walking_outside_cafe_disgusted_actors_c40.mp4", "18__walk_down_hall_angry_actors_c40.mp4", "19__exit_phone_room_actors_c40.mp4", "19__kitchen_pan_actors_c40.mp4", "19__kitchen_still_actors_c40.mp4", "19__outside_talking_pan_laughing_actors_c40.mp4", "19__outside_talking_still_laughing_actors_c40.mp4", "19__podium_speech_happy_actors_c40.mp4", "19__secret_conversation_actors_c40.mp4", "19__talking_against_wall_actors_c40.mp4", "19__talking_angry_couch_actors_c40.mp4", "19__walking_down_street_outside_angry_actors_c40.mp4", "19__walking_outside_cafe_disgusted_actors_c40.mp4", "19__walk_down_hall_angry_actors_c40.mp4", "20__exit_phone_room_actors_c40.mp4", "20__hugging_happy_actors_c40.mp4", "20__kitchen_pan_actors_c40.mp4", "20__kitchen_still_actors_c40.mp4", "20__outside_talking_pan_laughing_actors_c40.mp4", "20__outside_talking_still_laughing_actors_c40.mp4", "20__podium_speech_happy_actors_c40.mp4", "20__secret_conversation_actors_c40.mp4", "20__talking_against_wall_actors_c40.mp4", "20__talking_angry_couch_actors_c40.mp4", "20__walking_and_outside_surprised_actors_c40.mp4", "20__walking_down_indoor_hall_disgust_actors_c40.mp4", "20__walking_down_street_outside_angry_actors_c40.mp4", "20__walking_outside_cafe_disgusted_actors_c40.mp4", "20__walk_down_hall_angry_actors_c40.mp4", "21__exit_phone_room_actors_c40.mp4", "21__hugging_happy_actors_c40.mp4", "21__kitchen_pan_actors_c40.mp4", "21__kitchen_still_actors_c40.mp4", "21__outside_talking_pan_laughing_actors_c40.mp4", "21__outside_talking_still_laughing_actors_c40.mp4", "21__podium_speech_happy_actors_c40.mp4", "21__talking_against_wall_actors_c40.mp4", "21__talking_angry_couch_actors_c40.mp4", "21__walking_and_outside_surprised_actors_c40.mp4", "21__walking_down_indoor_hall_disgust_actors_c40.mp4", "21__walking_down_street_outside_angry_actors_c40.mp4", "21__walking_outside_cafe_disgusted_actors_c40.mp4", "21__walk_down_hall_angry_actors_c40.mp4", "22__exit_phone_room_actors_c40.mp4", "22__kitchen_pan_actors_c40.mp4", "22__kitchen_still_actors_c40.mp4", "22__outside_talking_pan_laughing_actors_c40.mp4", "22__outside_talking_still_laughing_actors_c40.mp4", "22__podium_speech_happy_actors_c40.mp4", "22__secret_conversation_actors_c40.mp4", "22__talking_against_wall_actors_c40.mp4", "22__walking_and_outside_surprised_actors_c40.mp4", "22__walking_down_indoor_hall_disgust_actors_c40.mp4", "22__walking_down_street_outside_angry_actors_c40.mp4", "22__walking_outside_cafe_disgusted_actors_c40.mp4", "22__walk_down_hall_angry_actors_c40.mp4", "23__exit_phone_room_actors_c40.mp4", "23__hugging_happy_actors_c40.mp4", "23__kitchen_pan_actors_c40.mp4", "23__kitchen_still_actors_c40.mp4", "23__outside_talking_pan_laughing_actors_c40.mp4", "23__outside_talking_still_laughing_actors_c40.mp4", "23__podium_speech_happy_actors_c40.mp4", "23__secret_conversation_actors_c40.mp4", "23__talking_against_wall_actors_c40.mp4", "23__talking_angry_couch_actors_c40.mp4", "23__walking_and_outside_surprised_actors_c40.mp4", "23__walking_down_indoor_hall_disgust_actors_c40.mp4", "23__walking_down_street_outside_angry_actors_c40.mp4", "23__walking_outside_cafe_disgusted_actors_c40.mp4", "23__walk_down_hall_angry_actors_c40.mp4", "24__exit_phone_room_actors_c40.mp4", "24__kitchen_pan_actors_c40.mp4", "24__kitchen_still_actors_c40.mp4", "24__outside_talking_pan_laughing_actors_c40.mp4", "24__outside_talking_still_laughing_actors_c40.mp4", "24__podium_speech_happy_actors_c40.mp4", "24__secret_conversation_actors_c40.mp4", "24__talking_against_wall_actors_c40.mp4", "24__talking_angry_couch_actors_c40.mp4", "24__walking_down_street_outside_angry_actors_c40.mp4", "24__walking_outside_cafe_disgusted_actors_c40.mp4", "24__walk_down_hall_angry_actors_c40.mp4", "25__exit_phone_room_actors_c40.mp4", "25__outside_talking_pan_laughing_actors_c40.mp4", "25__outside_talking_still_laughing_actors_c40.mp4", "25__podium_speech_happy_actors_c40.mp4", "25__secret_conversation_actors_c40.mp4", "25__talking_against_wall_actors_c40.mp4", "25__walking_down_street_outside_angry_actors_c40.mp4", "25__walking_outside_cafe_disgusted_actors_c40.mp4", "25__walk_down_hall_angry_actors_c40.mp4", "26__exit_phone_room_actors_c40.mp4", "26__kitchen_pan_actors_c40.mp4", "26__kitchen_still_actors_c40.mp4", "26__outside_talking_pan_laughing_actors_c40.mp4", "26__outside_talking_still_laughing_actors_c40.mp4", "26__podium_speech_happy_actors_c40.mp4", "26__secret_conversation_actors_c40.mp4", "26__talking_against_wall_actors_c40.mp4", "26__talking_angry_couch_actors_c40.mp4", "26__walking_down_street_outside_angry_actors_c40.mp4", "26__walking_outside_cafe_disgusted_actors_c40.mp4", "26__walk_down_hall_angry_actors_c40.mp4", "27__exit_phone_room_actors_c40.mp4", "27__hugging_happy_actors_c40.mp4", "27__kitchen_pan_actors_c40.mp4", "27__kitchen_still_actors_c40.mp4", "27__meeting_serious_actors_c40.mp4", "27__outside_talking_pan_laughing_actors_c40.mp4", "27__outside_talking_still_laughing_actors_c40.mp4", "27__podium_speech_happy_actors_c40.mp4", "27__talking_against_wall_actors_c40.mp4", "27__talking_angry_couch_actors_c40.mp4", "27__walking_and_outside_surprised_actors_c40.mp4", "27__walking_down_indoor_hall_disgust_actors_c40.mp4", "27__walking_down_street_outside_angry_actors_c40.mp4", "27__walking_outside_cafe_disgusted_actors_c40.mp4", "27__walk_down_hall_angry_actors_c40.mp4", "28__exit_phone_room_actors_c40.mp4", "28__kitchen_pan_actors_c40.mp4", "28__kitchen_still_actors_c40.mp4", "28__outside_talking_pan_laughing_actors_c40.mp4", "28__outside_talking_still_laughing_actors_c40.mp4", "28__podium_speech_happy_actors_c40.mp4", "28__secret_conversation_actors_c40.mp4", "28__talking_angry_couch_actors_c40.mp4", "28__walking_down_street_outside_angry_actors_c40.mp4", "28__walking_outside_cafe_disgusted_actors_c40.mp4", "28__walk_down_hall_angry_actors_c40.mp4", "000_youtube_c23.mp4", "001_youtube_c23.mp4", "002_youtube_c23.mp4", "003_youtube_c23.mp4", "004_youtube_c23.mp4", "005_youtube_c23.mp4", "006_youtube_c23.mp4", "007_youtube_c23.mp4", "008_youtube_c23.mp4", "009_youtube_c23.mp4", "010_youtube_c23.mp4", "011_youtube_c23.mp4", "012_youtube_c23.mp4", "013_youtube_c23.mp4", "014_youtube_c23.mp4", "015_youtube_c23.mp4", "016_youtube_c23.mp4", "017_youtube_c23.mp4", "018_youtube_c23.mp4", "019_youtube_c23.mp4", "020_youtube_c23.mp4", "021_youtube_c23.mp4", "022_youtube_c23.mp4", "023_youtube_c23.mp4", "024_youtube_c23.mp4", "025_youtube_c23.mp4", "026_youtube_c23.mp4", "027_youtube_c23.mp4", "028_youtube_c23.mp4", "029_youtube_c23.mp4", "030_youtube_c23.mp4", "031_youtube_c23.mp4", "032_youtube_c23.mp4", "033_youtube_c23.mp4", "034_youtube_c23.mp4", "035_youtube_c23.mp4", "036_youtube_c23.mp4", "037_youtube_c23.mp4", "038_youtube_c23.mp4", "039_youtube_c23.mp4", "040_youtube_c23.mp4", "041_youtube_c23.mp4", "042_youtube_c23.mp4", "043_youtube_c23.mp4", "044_youtube_c23.mp4", "045_youtube_c23.mp4", "046_youtube_c23.mp4", "047_youtube_c23.mp4", "048_youtube_c23.mp4", "049_youtube_c23.mp4", "050_youtube_c23.mp4", "051_youtube_c23.mp4", "052_youtube_c23.mp4", "053_youtube_c23.mp4", "054_youtube_c23.mp4", "055_youtube_c23.mp4", "056_youtube_c23.mp4", "057_youtube_c23.mp4", "058_youtube_c23.mp4", "059_youtube_c23.mp4", "060_youtube_c23.mp4", "061_youtube_c23.mp4", "062_youtube_c23.mp4", "063_youtube_c23.mp4", "064_youtube_c23.mp4", "065_youtube_c23.mp4", "066_youtube_c23.mp4", "067_youtube_c23.mp4", "068_youtube_c23.mp4", "069_youtube_c23.mp4", "070_youtube_c23.mp4", "071_youtube_c23.mp4", "072_youtube_c23.mp4", "073_youtube_c23.mp4", "074_youtube_c23.mp4", "075_youtube_c23.mp4", "076_youtube_c23.mp4", "077_youtube_c23.mp4", "078_youtube_c23.mp4", "079_youtube_c23.mp4", "080_youtube_c23.mp4", "081_youtube_c23.mp4", "082_youtube_c23.mp4", "083_youtube_c23.mp4", "084_youtube_c23.mp4", "085_youtube_c23.mp4", "086_youtube_c23.mp4", "087_youtube_c23.mp4", "088_youtube_c23.mp4", "089_youtube_c23.mp4", "090_youtube_c23.mp4", "091_youtube_c23.mp4", "092_youtube_c23.mp4", "093_youtube_c23.mp4", "094_youtube_c23.mp4", "095_youtube_c23.mp4", "096_youtube_c23.mp4", "097_youtube_c23.mp4", "098_youtube_c23.mp4", "099_youtube_c23.mp4", "100_youtube_c23.mp4", "101_youtube_c23.mp4", "102_youtube_c23.mp4", "103_youtube_c23.mp4", "104_youtube_c23.mp4", "105_youtube_c23.mp4", "106_youtube_c23.mp4", "107_youtube_c23.mp4", "108_youtube_c23.mp4", "109_youtube_c23.mp4", "110_youtube_c23.mp4", "111_youtube_c23.mp4", "112_youtube_c23.mp4", "113_youtube_c23.mp4", "114_youtube_c23.mp4", "115_youtube_c23.mp4", "116_youtube_c23.mp4", "117_youtube_c23.mp4", "118_youtube_c23.mp4", "119_youtube_c23.mp4", "120_youtube_c23.mp4", "121_youtube_c23.mp4", "122_youtube_c23.mp4", "123_youtube_c23.mp4", "124_youtube_c23.mp4", "125_youtube_c23.mp4", "126_youtube_c23.mp4", "127_youtube_c23.mp4", "128_youtube_c23.mp4", "129_youtube_c23.mp4", "130_youtube_c23.mp4", "131_youtube_c23.mp4", "132_youtube_c23.mp4", "133_youtube_c23.mp4", "134_youtube_c23.mp4", "135_youtube_c23.mp4", "136_youtube_c23.mp4", "137_youtube_c23.mp4", "138_youtube_c23.mp4", "139_youtube_c23.mp4", "140_youtube_c23.mp4", "141_youtube_c23.mp4", "142_youtube_c23.mp4", "143_youtube_c23.mp4", "144_youtube_c23.mp4", "145_youtube_c23.mp4", "146_youtube_c23.mp4", "147_youtube_c23.mp4", "148_youtube_c23.mp4", "149_youtube_c23.mp4", "150_youtube_c23.mp4", "151_youtube_c23.mp4", "152_youtube_c23.mp4", "153_youtube_c23.mp4", "154_youtube_c23.mp4", "155_youtube_c23.mp4", "156_youtube_c23.mp4", "157_youtube_c23.mp4", "158_youtube_c23.mp4", "159_youtube_c23.mp4", "160_youtube_c23.mp4", "161_youtube_c23.mp4", "162_youtube_c23.mp4", "163_youtube_c23.mp4", "164_youtube_c23.mp4", "165_youtube_c23.mp4", "166_youtube_c23.mp4", "167_youtube_c23.mp4", "168_youtube_c23.mp4", "169_youtube_c23.mp4", "170_youtube_c23.mp4", "171_youtube_c23.mp4", "172_youtube_c23.mp4", "173_youtube_c23.mp4", "174_youtube_c23.mp4", "175_youtube_c23.mp4", "176_youtube_c23.mp4", "177_youtube_c23.mp4", "178_youtube_c23.mp4", "179_youtube_c23.mp4", "180_youtube_c23.mp4", "181_youtube_c23.mp4", "182_youtube_c23.mp4", "183_youtube_c23.mp4", "184_youtube_c23.mp4", "185_youtube_c23.mp4", "186_youtube_c23.mp4", "187_youtube_c23.mp4", "188_youtube_c23.mp4", "189_youtube_c23.mp4", "190_youtube_c23.mp4", "191_youtube_c23.mp4", "192_youtube_c23.mp4", "193_youtube_c23.mp4", "194_youtube_c23.mp4", "195_youtube_c23.mp4", "196_youtube_c23.mp4", "197_youtube_c23.mp4", "198_youtube_c23.mp4", "199_youtube_c23.mp4", "200_youtube_c23.mp4", "201_youtube_c23.mp4", "202_youtube_c23.mp4", "203_youtube_c23.mp4", "204_youtube_c23.mp4", "205_youtube_c23.mp4", "206_youtube_c23.mp4", "207_youtube_c23.mp4", "208_youtube_c23.mp4", "209_youtube_c23.mp4", "210_youtube_c23.mp4", "211_youtube_c23.mp4", "212_youtube_c23.mp4", "213_youtube_c23.mp4", "214_youtube_c23.mp4", "215_youtube_c23.mp4", "216_youtube_c23.mp4", "217_youtube_c23.mp4", "218_youtube_c23.mp4", "219_youtube_c23.mp4", "220_youtube_c23.mp4", "221_youtube_c23.mp4", "222_youtube_c23.mp4", "223_youtube_c23.mp4", "224_youtube_c23.mp4", "225_youtube_c23.mp4", "226_youtube_c23.mp4", "227_youtube_c23.mp4", "228_youtube_c23.mp4", "229_youtube_c23.mp4", "230_youtube_c23.mp4", "231_youtube_c23.mp4", "232_youtube_c23.mp4", "233_youtube_c23.mp4", "234_youtube_c23.mp4", "235_youtube_c23.mp4", "236_youtube_c23.mp4", "237_youtube_c23.mp4", "238_youtube_c23.mp4", "239_youtube_c23.mp4", "240_youtube_c23.mp4", "241_youtube_c23.mp4", "242_youtube_c23.mp4", "243_youtube_c23.mp4", "244_youtube_c23.mp4", "245_youtube_c23.mp4", "246_youtube_c23.mp4", "247_youtube_c23.mp4", "248_youtube_c23.mp4", "249_youtube_c23.mp4", "250_youtube_c23.mp4", "251_youtube_c23.mp4", "252_youtube_c23.mp4", "253_youtube_c23.mp4", "254_youtube_c23.mp4", "255_youtube_c23.mp4", "256_youtube_c23.mp4", "257_youtube_c23.mp4", "258_youtube_c23.mp4", "259_youtube_c23.mp4", "260_youtube_c23.mp4", "261_youtube_c23.mp4", "262_youtube_c23.mp4", "263_youtube_c23.mp4", "264_youtube_c23.mp4", "265_youtube_c23.mp4", "266_youtube_c23.mp4", "267_youtube_c23.mp4", "268_youtube_c23.mp4", "269_youtube_c23.mp4", "270_youtube_c23.mp4", "271_youtube_c23.mp4", "272_youtube_c23.mp4", "273_youtube_c23.mp4", "274_youtube_c23.mp4", "275_youtube_c23.mp4", "276_youtube_c23.mp4", "277_youtube_c23.mp4", "278_youtube_c23.mp4", "279_youtube_c23.mp4", "280_youtube_c23.mp4", "281_youtube_c23.mp4", "282_youtube_c23.mp4", "283_youtube_c23.mp4", "284_youtube_c23.mp4", "285_youtube_c23.mp4", "286_youtube_c23.mp4", "287_youtube_c23.mp4", "288_youtube_c23.mp4", "289_youtube_c23.mp4", "290_youtube_c23.mp4", "291_youtube_c23.mp4", "292_youtube_c23.mp4", "293_youtube_c23.mp4", "294_youtube_c23.mp4", "295_youtube_c23.mp4", "296_youtube_c23.mp4", "297_youtube_c23.mp4", "298_youtube_c23.mp4", "299_youtube_c23.mp4", "300_youtube_c23.mp4", "301_youtube_c23.mp4", "302_youtube_c23.mp4", "303_youtube_c23.mp4", "304_youtube_c23.mp4", "305_youtube_c23.mp4", "306_youtube_c23.mp4", "307_youtube_c23.mp4", "308_youtube_c23.mp4", "309_youtube_c23.mp4", "310_youtube_c23.mp4", "311_youtube_c23.mp4", "312_youtube_c23.mp4", "313_youtube_c23.mp4", "314_youtube_c23.mp4", "315_youtube_c23.mp4", "316_youtube_c23.mp4", "317_youtube_c23.mp4", "318_youtube_c23.mp4", "319_youtube_c23.mp4", "320_youtube_c23.mp4", "321_youtube_c23.mp4", "322_youtube_c23.mp4", "323_youtube_c23.mp4", "324_youtube_c23.mp4", "325_youtube_c23.mp4", "326_youtube_c23.mp4", "327_youtube_c23.mp4", "328_youtube_c23.mp4", "329_youtube_c23.mp4", "330_youtube_c23.mp4", "331_youtube_c23.mp4", "332_youtube_c23.mp4", "333_youtube_c23.mp4", "334_youtube_c23.mp4", "335_youtube_c23.mp4", "336_youtube_c23.mp4", "337_youtube_c23.mp4", "338_youtube_c23.mp4", "339_youtube_c23.mp4", "340_youtube_c23.mp4", "341_youtube_c23.mp4", "342_youtube_c23.mp4", "343_youtube_c23.mp4", "344_youtube_c23.mp4", "345_youtube_c23.mp4", "346_youtube_c23.mp4", "347_youtube_c23.mp4", "348_youtube_c23.mp4", "349_youtube_c23.mp4", "350_youtube_c23.mp4", "351_youtube_c23.mp4", "352_youtube_c23.mp4", "353_youtube_c23.mp4", "354_youtube_c23.mp4", "355_youtube_c23.mp4", "356_youtube_c23.mp4", "357_youtube_c23.mp4", "358_youtube_c23.mp4", "359_youtube_c23.mp4", "360_youtube_c23.mp4", "361_youtube_c23.mp4", "362_youtube_c23.mp4", "363_youtube_c23.mp4", "364_youtube_c23.mp4", "365_youtube_c23.mp4", "366_youtube_c23.mp4", "367_youtube_c23.mp4", "368_youtube_c23.mp4", "369_youtube_c23.mp4", "370_youtube_c23.mp4", "371_youtube_c23.mp4", "372_youtube_c23.mp4", "373_youtube_c23.mp4", "374_youtube_c23.mp4", "375_youtube_c23.mp4", "376_youtube_c23.mp4", "377_youtube_c23.mp4", "378_youtube_c23.mp4", "379_youtube_c23.mp4", "380_youtube_c23.mp4", "381_youtube_c23.mp4", "382_youtube_c23.mp4", "383_youtube_c23.mp4", "384_youtube_c23.mp4", "385_youtube_c23.mp4", "386_youtube_c23.mp4", "387_youtube_c23.mp4", "388_youtube_c23.mp4", "389_youtube_c23.mp4", "390_youtube_c23.mp4", "391_youtube_c23.mp4", "392_youtube_c23.mp4", "393_youtube_c23.mp4", "394_youtube_c23.mp4", "395_youtube_c23.mp4", "396_youtube_c23.mp4", "397_youtube_c23.mp4", "398_youtube_c23.mp4", "399_youtube_c23.mp4", "400_youtube_c23.mp4", "401_youtube_c23.mp4", "402_youtube_c23.mp4", "403_youtube_c23.mp4", "404_youtube_c23.mp4", "405_youtube_c23.mp4", "406_youtube_c23.mp4", "407_youtube_c23.mp4", "408_youtube_c23.mp4", "409_youtube_c23.mp4", "410_youtube_c23.mp4", "411_youtube_c23.mp4", "412_youtube_c23.mp4", "413_youtube_c23.mp4", "414_youtube_c23.mp4", "415_youtube_c23.mp4", "416_youtube_c23.mp4", "417_youtube_c23.mp4", "418_youtube_c23.mp4", "419_youtube_c23.mp4", "420_youtube_c23.mp4", "421_youtube_c23.mp4", "422_youtube_c23.mp4", "423_youtube_c23.mp4", "424_youtube_c23.mp4", "425_youtube_c23.mp4", "426_youtube_c23.mp4", "427_youtube_c23.mp4", "428_youtube_c23.mp4", "429_youtube_c23.mp4", "430_youtube_c23.mp4", "431_youtube_c23.mp4", "432_youtube_c23.mp4", "433_youtube_c23.mp4", "434_youtube_c23.mp4", "435_youtube_c23.mp4", "436_youtube_c23.mp4", "437_youtube_c23.mp4", "438_youtube_c23.mp4", "439_youtube_c23.mp4", "440_youtube_c23.mp4", "441_youtube_c23.mp4", "442_youtube_c23.mp4", "443_youtube_c23.mp4", "444_youtube_c23.mp4", "445_youtube_c23.mp4", "446_youtube_c23.mp4", "447_youtube_c23.mp4", "448_youtube_c23.mp4", "449_youtube_c23.mp4", "450_youtube_c23.mp4", "451_youtube_c23.mp4", "452_youtube_c23.mp4", "453_youtube_c23.mp4", "454_youtube_c23.mp4", "455_youtube_c23.mp4", "456_youtube_c23.mp4", "457_youtube_c23.mp4", "458_youtube_c23.mp4", "459_youtube_c23.mp4", "460_youtube_c23.mp4", "461_youtube_c23.mp4", "462_youtube_c23.mp4", "463_youtube_c23.mp4", "464_youtube_c23.mp4", "465_youtube_c23.mp4", "466_youtube_c23.mp4", "467_youtube_c23.mp4", "468_youtube_c23.mp4", "469_youtube_c23.mp4", "470_youtube_c23.mp4", "471_youtube_c23.mp4", "472_youtube_c23.mp4", "473_youtube_c23.mp4", "474_youtube_c23.mp4", "475_youtube_c23.mp4", "476_youtube_c23.mp4", "477_youtube_c23.mp4", "478_youtube_c23.mp4", "479_youtube_c23.mp4", "480_youtube_c23.mp4", "481_youtube_c23.mp4", "482_youtube_c23.mp4", "483_youtube_c23.mp4", "484_youtube_c23.mp4", "485_youtube_c23.mp4", "486_youtube_c23.mp4", "487_youtube_c23.mp4", "488_youtube_c23.mp4", "489_youtube_c23.mp4", "490_youtube_c23.mp4", "491_youtube_c23.mp4", "492_youtube_c23.mp4", "493_youtube_c23.mp4", "494_youtube_c23.mp4", "495_youtube_c23.mp4", "496_youtube_c23.mp4", "497_youtube_c23.mp4", "498_youtube_c23.mp4", "499_youtube_c23.mp4", "500_youtube_c23.mp4", "501_youtube_c23.mp4", "502_youtube_c23.mp4", "503_youtube_c23.mp4", "504_youtube_c23.mp4", "505_youtube_c23.mp4", "506_youtube_c23.mp4", "507_youtube_c23.mp4", "508_youtube_c23.mp4", "509_youtube_c23.mp4", "510_youtube_c23.mp4", "511_youtube_c23.mp4", "512_youtube_c23.mp4", "513_youtube_c23.mp4", "514_youtube_c23.mp4", "515_youtube_c23.mp4", "516_youtube_c23.mp4", "517_youtube_c23.mp4", "518_youtube_c23.mp4", "519_youtube_c23.mp4", "520_youtube_c23.mp4", "521_youtube_c23.mp4", "522_youtube_c23.mp4", "523_youtube_c23.mp4", "524_youtube_c23.mp4", "525_youtube_c23.mp4", "526_youtube_c23.mp4", "527_youtube_c23.mp4", "528_youtube_c23.mp4", "529_youtube_c23.mp4", "530_youtube_c23.mp4", "531_youtube_c23.mp4", "532_youtube_c23.mp4", "533_youtube_c23.mp4", "534_youtube_c23.mp4", "535_youtube_c23.mp4", "536_youtube_c23.mp4", "537_youtube_c23.mp4", "538_youtube_c23.mp4", "539_youtube_c23.mp4", "540_youtube_c23.mp4", "541_youtube_c23.mp4", "542_youtube_c23.mp4", "543_youtube_c23.mp4", "544_youtube_c23.mp4", "545_youtube_c23.mp4", "546_youtube_c23.mp4", "547_youtube_c23.mp4", "548_youtube_c23.mp4", "549_youtube_c23.mp4", "550_youtube_c23.mp4", "551_youtube_c23.mp4", "552_youtube_c23.mp4", "553_youtube_c23.mp4", "554_youtube_c23.mp4", "555_youtube_c23.mp4", "556_youtube_c23.mp4", "557_youtube_c23.mp4", "558_youtube_c23.mp4", "559_youtube_c23.mp4", "560_youtube_c23.mp4", "561_youtube_c23.mp4", "562_youtube_c23.mp4", "563_youtube_c23.mp4", "564_youtube_c23.mp4", "565_youtube_c23.mp4", "566_youtube_c23.mp4", "567_youtube_c23.mp4", "568_youtube_c23.mp4", "569_youtube_c23.mp4", "570_youtube_c23.mp4", "571_youtube_c23.mp4", "572_youtube_c23.mp4", "573_youtube_c23.mp4", "574_youtube_c23.mp4", "575_youtube_c23.mp4", "576_youtube_c23.mp4", "577_youtube_c23.mp4", "578_youtube_c23.mp4", "579_youtube_c23.mp4", "580_youtube_c23.mp4", "581_youtube_c23.mp4", "582_youtube_c23.mp4", "583_youtube_c23.mp4", "584_youtube_c23.mp4", "585_youtube_c23.mp4", "586_youtube_c23.mp4", "587_youtube_c23.mp4", "588_youtube_c23.mp4", "589_youtube_c23.mp4", "590_youtube_c23.mp4", "591_youtube_c23.mp4", "592_youtube_c23.mp4", "593_youtube_c23.mp4", "594_youtube_c23.mp4", "595_youtube_c23.mp4", "596_youtube_c23.mp4", "597_youtube_c23.mp4", "598_youtube_c23.mp4", "599_youtube_c23.mp4", "600_youtube_c23.mp4", "601_youtube_c23.mp4", "602_youtube_c23.mp4", "603_youtube_c23.mp4", "604_youtube_c23.mp4", "605_youtube_c23.mp4", "606_youtube_c23.mp4", "607_youtube_c23.mp4", "608_youtube_c23.mp4", "609_youtube_c23.mp4", "610_youtube_c23.mp4", "611_youtube_c23.mp4", "612_youtube_c23.mp4", "613_youtube_c23.mp4", "614_youtube_c23.mp4", "615_youtube_c23.mp4", "616_youtube_c23.mp4"], "pred": [0.6064342856407166, 0.8061283826828003, 0.6884141564369202, 0.6211369037628174, 0.6488531231880188, 0.6582576036453247, 0.691749095916748, 0.9244952201843262, 0.9057085514068604, 0.8915337324142456, 0.959771990776062, 0.9758649468421936, 0.9675860404968262, 0.9770511984825134, 0.9879925847053528, 0.9404392242431641, 0.9630922079086304, 0.9939124584197998, 0.9853466153144836, 0.9876190423965454, 0.9949666857719421, 0.98136305809021, 0.9794056415557861, 0.9743140935897827, 0.9960885047912598, 0.9842520952224731, 0.945907473564148, 0.9223855137825012, 0.9978022575378418, 0.9992441534996033, 0.749001145362854, 0.8354536890983582, 0.5095155835151672, 0.5244224071502686, 0.8442688584327698, 0.4122413992881775, 0.5329773426055908, 0.3401261568069458, 0.8718916773796082, 0.9664708971977234, 0.9760407209396362, 0.9704892635345459, 0.8260815739631653, 0.9874313473701477, 0.9756594300270081, 0.8119983673095703, 0.9618350863456726, 0.961554765701294, 0.9770894646644592, 0.9021996259689331, 0.7905179262161255, 0.8311954736709595, 0.8519478440284729, 0.7544939517974854, 0.8081658482551575, 0.7105153799057007, 0.8736576437950134, 0.823065996170044, 0.8599919676780701, 0.9459749460220337, 0.9174817800521851, 0.9489912390708923, 0.7782903909683228, 0.9591507315635681, 0.9563879370689392, 0.9775395393371582, 0.9199169874191284, 0.9208713173866272, 0.6578943729400635, 0.9529594779014587, 0.9784334897994995, 0.9551622867584229, 0.9946987628936768, 0.988261342048645, 0.9852871894836426, 0.9719856381416321, 0.9942449331283569, 0.9909496903419495, 0.9905336499214172, 0.9889336824417114, 0.999625027179718, 0.9994015693664551, 0.9956929683685303, 0.9968702793121338, 0.989922821521759, 0.9920019507408142, 0.9988508224487305, 0.9996034502983093, 0.9910603165626526, 0.9996358156204224, 0.9148634672164917, 0.9806505441665649, 0.9635031223297119, 0.9281908273696899, 0.911686897277832, 0.9453582167625427, 0.9755839109420776, 0.9480525851249695, 0.7924993634223938, 0.9114372730255127, 0.9959409236907959, 0.9817556738853455, 0.9985097646713257, 0.9944584965705872, 0.9968246221542358, 0.997654914855957, 0.996293842792511, 0.9965139627456665, 0.9775219559669495, 0.9941733479499817, 0.8682196140289307, 0.9403079748153687, 0.828468918800354, 0.8115344643592834, 0.9055007696151733, 0.7326448559761047, 0.8665247559547424, 0.7393576502799988, 0.8584904074668884, 0.893980085849762, 0.9625777006149292, 0.9493902921676636, 0.9548908472061157, 0.9232043027877808, 0.9477455019950867, 0.9689153432846069, 0.84516841173172, 0.893222987651825, 0.9687978029251099, 0.9209871292114258, 0.9305130839347839, 0.9158822894096375, 0.9694982171058655, 0.9160217642784119, 0.9135276675224304, 0.9278585910797119, 0.955838680267334, 0.9218544960021973, 0.985000729560852, 0.954982340335846, 0.9962444305419922, 0.9865143299102783, 0.9204444289207458, 0.8164684176445007, 0.8463850617408752, 0.9183249473571777, 0.9438667893409729, 0.6220029592514038, 0.9417890310287476, 0.962751030921936, 0.7190148234367371, 0.6223213076591492, 0.68243008852005, 0.7367326617240906, 0.780454695224762, 0.6675204038619995, 0.9286397099494934, 0.9274305105209351, 0.6706690788269043, 0.5085774660110474, 0.9986690282821655, 0.9973192811012268, 0.996744692325592, 0.9975952506065369, 0.9960297346115112, 0.9990583658218384, 0.9815734624862671, 0.9808914065361023, 0.9973468780517578, 0.9958488941192627, 0.6779840588569641, 0.7807379961013794, 0.3573044538497925, 0.5246957540512085, 0.5982131361961365, 0.7577921152114868, 0.49437564611434937, 0.48802316188812256, 0.3722798824310303, 0.12484937906265259, 0.9993427395820618, 0.9983768463134766, 0.996796190738678, 0.9993476867675781, 0.9996106624603271, 0.999232828617096, 0.9995710849761963, 0.9997302293777466, 0.9994348287582397, 0.9995331764221191, 0.9985623359680176, 0.9986925721168518, 0.99965900182724, 0.999668300151825, 0.9990015029907227, 0.9996524453163147, 0.9990383386611938, 0.9995032548904419, 0.9966183304786682, 0.9977240562438965, 0.9717738628387451, 0.9508544206619263, 0.9862216711044312, 0.9348360896110535, 0.9904698133468628, 0.98969566822052, 0.9739687442779541, 0.9806790351867676, 0.9318363666534424, 0.9786825180053711, 0.999312698841095, 0.9972401261329651, 0.9984734654426575, 0.9979000091552734, 0.9968189001083374, 0.9959384799003601, 0.9990141987800598, 0.9985533952713013, 0.9988654851913452, 0.9994257688522339, 0.9365885257720947, 0.9451092481613159, 0.9199461340904236, 0.911619246006012, 0.8536387085914612, 0.7841895818710327, 0.8540421724319458, 0.9367672204971313, 0.9159465432167053, 0.8968740105628967, 0.9967784881591797, 0.9995118975639343, 0.9943820238113403, 0.9993307590484619, 0.997490644454956, 0.9822410941123962, 0.9746552109718323, 0.9336802363395691, 0.9989303946495056, 0.9984039664268494, 0.9491530656814575, 0.986948549747467, 0.9736146330833435, 0.9779861569404602, 0.9680175185203552, 0.9536130428314209, 0.8676297068595886, 0.8638954758644104, 0.8005530834197998, 0.8445582985877991, 0.9870226383209229, 0.9519386887550354, 0.9793221950531006, 0.986417293548584, 0.9891913533210754, 0.983741044998169, 0.9862472414970398, 0.9955198168754578, 0.9915123581886292, 0.9321944117546082, 0.6351786255836487, 0.4669172167778015, 0.1989511251449585, 0.5013964176177979, 0.7438161969184875, 0.8329887390136719, 0.9225079417228699, 0.9232097268104553, 0.671931266784668, 0.8480950593948364, 0.9476664662361145, 0.9691383242607117, 0.9791368246078491, 0.9022343158721924, 0.9726600646972656, 0.9439072012901306, 0.9792540669441223, 0.8316432237625122, 0.9234490990638733, 0.8196621537208557, 0.4130866527557373, 0.6390240788459778, 0.591454267501831, 0.7211114764213562, 0.5686911344528198, 0.6888223886489868, 0.9570761919021606, 0.8824684619903564, 0.7380185127258301, 0.5151690244674683, 0.9984526038169861, 0.999213457107544, 0.999596357345581, 0.998933732509613, 0.9977848529815674, 0.9982684254646301, 0.9983838200569153, 0.9978901147842407, 0.9991012811660767, 0.9991915225982666, 0.9991990923881531, 0.9996351599693298, 0.9995582699775696, 0.9985185861587524, 0.9990405440330505, 0.9973431825637817, 0.9996282458305359, 0.9995063543319702, 0.999035656452179, 0.9969796538352966, 0.9997809529304504, 0.9998258352279663, 0.9998984932899475, 0.9999023079872131, 0.9998628497123718, 0.9999005794525146, 0.9997381567955017, 0.9998258352279663, 0.999103844165802, 0.9996455311775208, 0.9961229562759399, 0.9960237741470337, 0.9798662662506104, 0.9931965470314026, 0.9964002370834351, 0.9946931600570679, 0.997765064239502, 0.9997490048408508, 0.9993910789489746, 0.9992380142211914, 0.9974711537361145, 0.9967104196548462, 0.998896062374115, 0.9991777539253235, 0.998960554599762, 0.996870219707489, 0.9964638352394104, 0.9945808053016663, 0.9900518655776978, 0.9982864856719971, 0.9908941388130188, 0.9884157180786133, 0.99065101146698, 0.9961728453636169, 0.9953926205635071, 0.9962150454521179, 0.9946887493133545, 0.9922122359275818, 0.9962332248687744, 0.997343897819519, 0.9996151328086853, 0.9994677305221558, 0.99958336353302, 0.9994381666183472, 0.9990586042404175, 0.9982147812843323, 0.987892210483551, 0.9694536328315735, 0.9994603395462036, 0.9991744160652161, 0.9955765008926392, 0.975161612033844, 0.9700226783752441, 0.9788075089454651, 0.9604242444038391, 0.8981499671936035, 0.9732971787452698, 0.9811447262763977, 0.996212363243103, 0.9684727191925049, 0.959709107875824, 0.9486683011054993, 0.8828068971633911, 0.8773771524429321, 0.9515275955200195, 0.8891878724098206, 0.9921156167984009, 0.9290443658828735, 0.8672927618026733, 0.9275221228599548, 0.9943237900733948, 0.9977691173553467, 0.9987870454788208, 0.9975329637527466, 0.9957900047302246, 0.9993811249732971, 0.9864592552185059, 0.9860697388648987, 0.9969138503074646, 0.9875760674476624, 0.904090166091919, 0.7739529609680176, 0.9787067174911499, 0.9442890286445618, 0.9826037883758545, 0.940832793712616, 0.9862765669822693, 0.954352855682373, 0.9870839715003967, 0.9923322200775146, 0.9966114163398743, 0.9984161853790283, 0.9888833165168762, 0.9913638234138489, 0.983410656452179, 0.9776424169540405, 0.9972805380821228, 0.997657835483551, 0.9994615316390991, 0.9995316863059998, 0.9415682554244995, 0.9784440994262695, 0.9961570501327515, 0.9851782321929932, 0.980061411857605, 0.9929559230804443, 0.9958497881889343, 0.9830664992332458, 0.9851570129394531, 0.9960217475891113, 0.982693612575531, 0.981402575969696, 0.9940062761306763, 0.9562461972236633, 0.9907800555229187, 0.9949890375137329, 0.9985609650611877, 0.996887743473053, 0.9968645572662354, 0.999386727809906, 0.9592481851577759, 0.9802924990653992, 0.9761332869529724, 0.9152083396911621, 0.964438259601593, 0.9506348371505737, 0.9502199292182922, 0.9587883353233337, 0.9704967737197876, 0.9797945618629456, 0.9787895679473877, 0.980048418045044, 0.9487031102180481, 0.9622104167938232, 0.9876455068588257, 0.968926191329956, 0.985257625579834, 0.99257892370224, 0.9898614287376404, 0.9809058308601379, 0.9959756135940552, 0.9907033443450928, 0.9962114691734314, 0.9884457588195801, 0.9940268993377686, 0.9908859729766846, 0.987757682800293, 0.9740297794342041, 0.9918932914733887, 0.9976604580879211, 0.9970285296440125, 0.9992895722389221, 0.999398946762085, 0.9995957016944885, 0.9990798830986023, 0.9993948936462402, 0.9995338916778564, 0.9624996781349182, 0.9908313751220703, 0.9992083311080933, 0.9975627064704895, 0.9989030361175537, 0.9992514848709106, 0.9994200468063354, 0.9993181228637695, 0.9995515942573547, 0.9997035264968872, 0.9996432065963745, 0.9983159303665161, 0.9979724884033203, 0.999172031879425, 0.9979574084281921, 0.9992311596870422, 0.9995421171188354, 0.9995570778846741, 0.9996444582939148, 0.999157726764679, 0.9990019798278809, 0.999752938747406, 0.9993064403533936, 0.991450846195221, 0.9993429780006409, 0.9949460029602051, 0.9979894757270813, 0.9986171126365662, 0.991988480091095, 0.9133569002151489, 0.9842052459716797, 0.9808107614517212, 0.6060410737991333, 0.9997466206550598, 0.9994199275970459, 0.9990721344947815, 0.9998322129249573, 0.9998171925544739, 0.9995371103286743, 0.9999229907989502, 0.999912440776825, 0.9998328685760498, 0.9998371005058289, 0.9983662366867065, 0.9990662932395935, 0.9990051984786987, 0.9983424544334412, 0.9990224838256836, 0.9964392781257629, 0.9963153004646301, 0.9951333403587341, 0.9895647764205933, 0.9941245913505554, 0.9997653365135193, 0.9969115853309631, 0.9973272681236267, 0.9960465431213379, 0.998992383480072, 0.9999303817749023, 0.9880639910697937, 0.9982755184173584, 0.999352753162384, 0.9994033575057983, 0.9998853206634521, 0.9998584985733032, 0.9998007416725159, 0.9998379349708557, 0.999845027923584, 0.9998754858970642, 0.9997826218605042, 0.9999171495437622, 0.9996536374092102, 0.9995951652526855, 0.9845404028892517, 0.9955753087997437, 0.9861817359924316, 0.9953145384788513, 0.9895229935646057, 0.9892803430557251, 0.9346182942390442, 0.987008273601532, 0.9832303524017334, 0.9789113998413086, 0.9852401614189148, 0.9997408986091614, 0.9836640954017639, 0.999198853969574, 0.988450825214386, 0.9846575260162354, 0.9878570437431335, 0.9814191460609436, 0.9976875185966492, 0.9973570108413696, 0.9735563397407532, 0.9887316823005676, 0.9703945517539978, 0.977542519569397, 0.9834405183792114, 0.982689380645752, 0.9238754510879517, 0.9707667827606201, 0.9474378824234009, 0.9021418690681458, 0.9936776161193848, 0.9743674993515015, 0.9819924831390381, 0.970690906047821, 0.9933744668960571, 0.9892510175704956, 0.9945545792579651, 0.9971020221710205, 0.9977700710296631, 0.9620010256767273, 0.9616957902908325, 0.9383591413497925, 0.8959205746650696, 0.9875624179840088, 0.9894686937332153, 0.9848118424415588, 0.9988365173339844, 0.9759431481361389, 0.9722895622253418, 0.9443785548210144, 0.9995458722114563, 0.9993994832038879, 0.9997408986091614, 0.9961938261985779, 0.9986246228218079, 0.9976770281791687, 0.9986572861671448, 0.9961411952972412, 0.9917091727256775, 0.9973821640014648, 0.998792827129364, 0.9984402060508728, 0.9970031976699829, 0.9951070547103882, 0.9978125095367432, 0.9993403553962708, 0.9994891881942749, 0.9994258284568787, 0.9971179366111755, 0.9991716742515564, 0.9984150528907776, 0.9992550611495972, 0.9933178424835205, 0.9977896809577942, 0.9993047714233398, 0.9976024627685547, 0.9979005455970764, 0.9947016835212708, 0.9989848732948303, 0.9992055892944336, 0.9998263716697693, 0.9997268319129944, 0.9997755289077759, 0.99972003698349, 0.9998413324356079, 0.9997774362564087, 0.9998608827590942, 0.9993799924850464, 0.9988982677459717, 0.9985837936401367, 0.9999459385871887, 0.9999632835388184, 0.9999534487724304, 0.9999544620513916, 0.9999639987945557, 0.9999553561210632, 0.9999713897705078, 0.9999514222145081, 0.9999232292175293, 0.9999195337295532, 0.07016044855117798, 0.21487611532211304, 0.04885226488113403, 0.004785776138305664, 0.21951830387115479, 0.3273865580558777, 0.13483089208602905, 0.020505547523498535, 0.06832486391067505, 0.0021059513092041016, 0.05970364809036255, 0.45330631732940674, 0.4945639669895172, 0.12995773553848267, 0.16035252809524536, 0.1609826683998108, 0.1634693741798401, 0.18534934520721436, 0.13914895057678223, 0.043550193309783936, 0.3835211396217346, 0.14706951379776, 0.058493077754974365, 0.1390635371208191, 0.1320044994354248, 0.003021419048309326, 0.019805610179901123, 0.4538484811782837, 0.4181775450706482, 0.1821434497833252, 0.1288420557975769, 0.2066892385482788, 0.17789024114608765, 0.01500403881072998, 0.0018069744110107422, 0.11858808994293213, 0.10881316661834717, 0.039552152156829834, 0.035751938819885254, 0.016949594020843506, 0.2545880079269409, 0.002447664737701416, 0.006843268871307373, 0.38472211360931396, 0.5115176439285278, 0.1998976469039917, 0.09602499008178711, 0.11949336528778076, 0.06929934024810791, 0.018703877925872803, 0.13767081499099731, 0.0568888783454895, 0.014131665229797363, 0.020139455795288086, 0.12582683563232422, 0.001774907112121582, 0.04380631446838379, 0.059210777282714844, 0.10867923498153687, 0.0956299901008606, 0.0247194766998291, 0.007107973098754883, 0.004763364791870117, 0.00797724723815918, 0.011574149131774902, 0.006205737590789795, 0.027449309825897217, 0.02547311782836914, 0.04198157787322998, 0.10016578435897827, 0.08915817737579346, 0.07025492191314697, 0.027853012084960938, 0.019629955291748047, 0.028505980968475342, 0.056610941886901855, 0.058609962463378906, 0.16672348976135254, 0.006721556186676025, 0.08891803026199341, 0.42147141695022583, 0.4606878161430359, 0.1251695156097412, 0.10212010145187378, 0.12914520502090454, 0.08511465787887573, 0.10101813077926636, 0.08377790451049805, 0.036582112312316895, 0.07035094499588013, 0.1289641261100769, 0.17884677648544312, 0.38675427436828613, 0.011578738689422607, 0.08224260807037354, 0.15927648544311523, 0.25640588998794556, 0.13138246536254883, 0.1358860731124878, 0.010989844799041748, 0.05791383981704712, 0.002294003963470459, 0.02277517318725586, 0.06426960229873657, 0.010952651500701904, 0.10475873947143555, 0.054197072982788086, 0.24457603693008423, 0.04260814189910889, 0.010316848754882812, 0.07216161489486694, 0.023650527000427246, 0.014689087867736816, 0.007531523704528809, 0.0011722445487976074, 0.010676383972167969, 0.10638231039047241, 0.0585249662399292, 0.03629666566848755, 0.0454634428024292, 0.19064563512802124, 0.0892828106880188, 0.09589517116546631, 0.013786494731903076, 0.035853445529937744, 0.05795645713806152, 0.09081494808197021, 0.1340467929840088, 0.05495870113372803, 0.01243603229522705, 0.012192785739898682, 0.09761792421340942, 0.14441299438476562, 0.04376775026321411, 0.12745577096939087, 0.015808820724487305, 0.009437978267669678, 0.047165095806121826, 0.06112641096115112, 0.013137996196746826, 0.04297506809234619, 0.14702361822128296, 0.020107150077819824, 0.013994753360748291, 0.037333130836486816, 0.019589781761169434, 0.05938291549682617, 0.1550033688545227, 0.07317107915878296, 0.001777350902557373, 0.6489872932434082, 0.667902410030365, 0.05599492788314819, 0.00785917043685913, 0.057343244552612305, 0.044659197330474854, 0.14666014909744263, 0.08482885360717773, 0.05386626720428467, 0.08441925048828125, 0.06076407432556152, 0.03636455535888672, 0.0028128623962402344, 0.08371555805206299, 0.011080145835876465, 0.6474553942680359, 0.6666321158409119, 0.0422137975692749, 0.03504759073257446, 0.10794258117675781, 0.23203414678573608, 0.1667860746383667, 0.053169846534729004, 0.03696799278259277, 0.009601235389709473, 0.055680930614471436, 0.3210632801055908, 0.03608638048171997, 0.009432852268218994, 0.2115224003791809, 0.5180574059486389, 0.7210667729377747, 0.10707235336303711, 0.04862278699874878, 0.17437857389450073, 0.09500455856323242, 0.09589868783950806, 0.033467888832092285, 0.0899801254272461, 0.09257352352142334, 0.04451650381088257, 0.27831512689590454, 0.09822243452072144, 0.2078896164894104, 0.5586827993392944, 0.6955521702766418, 0.21038174629211426, 0.0745055079460144, 0.18384122848510742, 0.03673982620239258, 0.10914301872253418, 0.11992943286895752, 0.04280751943588257, 0.24465912580490112, 0.17077970504760742, 0.03707623481750488, 0.17651081085205078, 0.4311510920524597, 0.06284195184707642, 0.12718462944030762, 0.09071648120880127, 0.029112815856933594, 0.5, 0.2559092044830322, 0.26790618896484375, 0.09155005216598511, 0.2042286992073059, 0.3417614698410034, 0.019193589687347412, 0.3884510397911072, 0.22493213415145874, 0.4312252402305603, 0.2124652862548828, 0.3163221478462219, 0.3182640075683594, 0.1179773211479187, 0.13422346115112305, 0.09369230270385742, 0.032532572746276855, 0.27757877111434937, 0.20517760515213013, 0.08799296617507935, 0.19935089349746704, 0.5236890912055969, 0.30029207468032837, 0.2029363512992859, 0.23858577013015747, 0.158799409866333, 0.02845931053161621, 0.08887022733688354, 0.46652108430862427, 0.07826888561248779, 0.021387457847595215, 0.03888970613479614, 0.34547287225723267, 0.516139805316925, 0.5517579317092896, 0.236791729927063, 0.3171881437301636, 0.5865511894226074, 0.28846168518066406, 0.3210397958755493, 0.4558509588241577, 0.2585502862930298, 0.002654135227203369, 0.12239176034927368, 0.02294182777404785, 0.6215544939041138, 0.5287520885467529, 0.24128788709640503, 0.3254743814468384, 0.5615882277488708, 0.24797576665878296, 0.1419275403022766, 0.27888596057891846, 0.22844868898391724, 0.19978082180023193, 0.18150389194488525, 0.11506712436676025, 0.14071309566497803, 0.10466820001602173, 0.623995304107666, 0.5282400250434875, 0.4738318920135498, 0.22905045747756958, 0.21883320808410645, 0.1899430751800537, 0.18146109580993652, 0.1312207579612732, 0.02127552032470703, 0.13865739107131958, 0.2316073179244995, 0.064769446849823, 0.006987273693084717, 0.3280256986618042, 0.3899511694908142, 0.07489770650863647, 0.14543473720550537, 0.24944531917572021, 0.11192238330841064, 0.13864266872406006, 0.048729121685028076, 0.11861616373062134, 0.10116660594940186, 0.08022850751876831, 0.14967501163482666, 0.10959988832473755, 0.005110740661621094, 0.21778517961502075, 0.3288801908493042, 0.3871085047721863, 0.02990865707397461, 0.2410602569580078, 0.08636999130249023, 0.06649625301361084, 0.028147339820861816, 0.022085130214691162, 0.04928463697433472, 0.045905113220214844, 0.09568250179290771, 0.1152830719947815, 0.020468711853027344, 0.0867300033569336, 0.18173885345458984, 0.40724271535873413, 0.23749595880508423, 0.0417366623878479, 0.46849238872528076, 0.21239924430847168, 0.02812504768371582, 0.031585752964019775, 0.017345011234283447, 0.18527883291244507, 0.19409072399139404, 0.2772296071052551, 0.13378798961639404, 0.05507773160934448, 0.16553711891174316, 0.21046483516693115, 0.14007121324539185, 0.10371589660644531, 0.05671954154968262, 0.050537824630737305, 0.10186094045639038, 0.29303526878356934, 0.21036499738693237, 0.3579467535018921, 0.21445363759994507, 0.10156393051147461, 0.13751721382141113, 0.032447099685668945, 0.34880727529525757, 0.1795404553413391, 0.10805165767669678, 0.4115239381790161, 0.09033071994781494, 0.23479604721069336, 0.42381197214126587, 0.5076216459274292, 0.1883900761604309, 0.3535560965538025, 0.19952142238616943, 0.11480534076690674, 0.10381913185119629, 0.06621205806732178, 0.023700833320617676, 0.022288262844085693, 0.34709811210632324, 0.0656159520149231, 0.13814640045166016, 0.1262524127960205, 0.11403536796569824, 0.08838880062103271, 0.2125241756439209, 0.22242075204849243, 0.16380947828292847, 0.10769355297088623, 0.38143688440322876, 0.34867632389068604, 0.1290745735168457, 0.09311425685882568, 0.26080793142318726, 0.03942883014678955, 0.08804410696029663, 0.33339422941207886, 0.4021211862564087, 0.151594340801239, 0.46610236167907715, 0.2997165322303772, 0.2908398509025574, 0.3068898320198059, 0.17745578289031982, 0.08373034000396729, 0.4576423764228821, 0.39133429527282715, 0.44921642541885376, 0.2855237126350403, 0.2430802583694458, 0.04299044609069824, 0.12780994176864624, 0.33111536502838135, 0.2629614472389221, 0.2671545743942261, 0.1426599621772766, 0.2661198377609253, 0.22655218839645386, 0.14695250988006592, 0.09760820865631104, 0.25531119108200073, 0.32011061906814575, 0.23776161670684814, 0.21889233589172363, 0.24046969413757324, 0.207675039768219, 0.04623997211456299, 0.18135327100753784, 0.38038212060928345, 0.28481465578079224, 0.2115013599395752, 0.10565370321273804, 0.15723758935928345, 0.033580005168914795, 0.20401406288146973, 0.12899255752563477, 0.16209977865219116, 0.2152649164199829, 0.22776734828948975, 0.11645716428756714, 0.013700664043426514, 0.08971291780471802, 0.049456238746643066, 0.25092774629592896, 0.20268326997756958, 0.06411230564117432, 0.11895138025283813, 0.05285865068435669, 0.019045650959014893, 0.09836751222610474, 0.08903175592422485, 0.14041775465011597, 0.024650633335113525, 0.03313446044921875, 0.09267425537109375, 0.2546215057373047, 0.12454229593276978, 0.10173147916793823, 0.05777275562286377, 0.14340698719024658, 0.30748575925827026, 0.25678181648254395, 0.24681717157363892, 0.0174216628074646, 0.06612390279769897, 0.36207371950149536, 0.16277170181274414, 0.11813819408416748, 0.15345531702041626, 0.21852397918701172, 0.173603355884552, 0.2396550178527832, 0.23674088716506958, 0.09446585178375244, 0.18413513898849487, 0.2845837473869324, 0.22434711456298828, 0.5, 0.18686872720718384, 0.1479085087776184, 0.2646634578704834, 0.21999961137771606, 0.2530919313430786, 0.2718346118927002, 0.11226892471313477, 0.0726085901260376, 0.0689658522605896, 0.20015984773635864, 0.23026102781295776, 0.11206018924713135, 0.25637513399124146, 0.20845681428909302, 0.3394625186920166, 0.12538915872573853, 0.06815928220748901, 0.15038210153579712, 0.1432664394378662, 0.1169213056564331, 0.035911381244659424, 0.1372826099395752, 0.06130772829055786, 0.3710096478462219, 0.022375047206878662, 0.10941505432128906, 0.11308324337005615, 0.28343623876571655, 0.15064460039138794, 0.1532418131828308, 0.08985978364944458, 0.10295283794403076, 0.13422346115112305, 0.053060829639434814, 0.1724756360054016, 0.09628546237945557, 0.08370959758758545, 0.0438351035118103, 0.11284476518630981, 0.16268742084503174, 0.30915510654449463, 0.34950196743011475, 0.019235193729400635, 0.15244239568710327, 0.08254510164260864, 0.048706889152526855, 0.14056462049484253, 0.04564779996871948, 0.06250202655792236, 0.008761703968048096, 0.013940095901489258, 0.017174959182739258, 0.0334969162940979, 0.027358591556549072, 0.4662274122238159, 0.017775893211364746, 0.0035005807876586914, 0.23209691047668457, 0.4257781505584717, 0.050442397594451904, 0.03606677055358887, 0.04834085702896118, 0.06420278549194336, 0.1833745837211609, 0.10512226819992065, 0.05919414758682251, 0.24940955638885498, 0.2162487506866455, 0.13632118701934814, 0.029724717140197754, 0.10175079107284546, 0.06046605110168457, 0.2297341227531433, 0.4246763586997986, 0.06078290939331055, 0.1779024600982666, 0.07523077726364136, 0.24085408449172974, 0.1223176121711731, 0.12085294723510742, 0.14059972763061523, 0.0694037675857544, 0.16838061809539795, 0.18369680643081665, 0.5, 0.03354084491729736, 0.18933618068695068, 0.47742050886154175, 0.47572869062423706, 0.19605517387390137, 0.10566729307174683, 0.1397196650505066, 0.25982362031936646, 0.34674906730651855, 0.16379666328430176, 0.10335135459899902, 0.17027497291564941, 0.17631185054779053, 0.20074045658111572, 0.16441351175308228, 0.1436828374862671, 0.36627423763275146, 0.45510876178741455, 0.2120324969291687, 0.14975816011428833, 0.34070855379104614, 0.09986895322799683, 0.13736289739608765, 0.17133712768554688, 0.13606929779052734, 0.18239444494247437, 0.130878746509552, 0.06645810604095459, 0.21764427423477173, 0.21590226888656616, 0.13488918542861938, 0.09459930658340454, 0.1260213851928711, 0.17808109521865845, 0.5, 0.013444781303405762, 0.07802766561508179, 0.3183590769767761, 0.11159008741378784, 0.23038709163665771, 0.17656290531158447, 0.1749092936515808, 0.16998803615570068, 0.21461933851242065, 0.15124469995498657, 0.4035987854003906, 0.5566130876541138, 0.27170878648757935, 0.26474064588546753, 0.1727370023727417, 0.2111925482749939, 0.47063565254211426, 0.49879539012908936, 0.2702586054801941, 0.289589524269104, 0.48957663774490356, 0.4632425308227539, 0.39981526136398315, 0.19585877656936646, 0.20594173669815063, 0.2367350459098816, 0.2776120901107788, 0.38508039712905884, 0.49255573749542236, 0.12780767679214478, 0.3881513476371765, 0.37838494777679443, 0.5696849226951599, 0.5173003673553467, 0.449102520942688, 0.37128543853759766, 0.24634742736816406, 0.20697146654129028, 0.4492683410644531, 0.43122875690460205, 0.5297084450721741, 0.5, 0.13170766830444336, 0.29412347078323364, 0.5611498951911926, 0.4299235939979553, 0.15255385637283325, 0.3015260100364685, 0.6681119799613953, 0.12011420726776123, 0.14278531074523926, 0.08830434083938599, 0.08277475833892822, 0.05684161186218262, 0.03163862228393555, 0.09146255254745483, 0.08523112535476685, 0.1242150068283081, 0.5641980171203613, 0.434040904045105, 0.1656239628791809, 0.2183055281639099, 0.24563151597976685, 0.22462403774261475, 0.3394492268562317, 0.3078534007072449, 0.3570413589477539, 0.5216337442398071, 0.508507251739502, 0.26651304960250854, 0.28575754165649414, 0.45614033937454224, 0.42116445302963257, 0.19669324159622192, 0.20864921808242798, 0.5017924904823303, 0.19505751132965088, 0.09243959188461304, 0.07086426019668579, 0.13298606872558594, 0.24941366910934448, 0.20315587520599365, 0.19873017072677612, 0.30728447437286377, 0.14226597547531128, 0.187147855758667, 0.4556592106819153, 0.4190475344657898, 0.2695213556289673, 0.22222936153411865, 0.10701107978820801, 0.2498934268951416, 0.1850096583366394, 0.14892125129699707, 0.28907424211502075, 0.3092607855796814, 0.3541345000267029, 0.31982624530792236, 0.21808308362960815, 0.3521224856376648, 0.421911358833313, 0.4931517541408539, 0.4912433624267578, 0.1056705117225647, 0.43186450004577637, 0.5120865702629089, 0.319327712059021, 0.5651434063911438, 0.08688133955001831, 0.1814051866531372, 0.2583075165748596, 0.4972013235092163, 0.22653746604919434, 0.07848727703094482, 0.31809747219085693, 0.4697246551513672, 0.500815749168396, 0.4644603729248047, 0.40593862533569336, 0.15887457132339478, 0.49753618240356445, 0.4236922860145569, 0.40057164430618286, 0.5197294354438782, 0.3141680359840393, 0.2730313539505005, 0.2542158365249634, 0.3334861397743225, 0.4882063865661621, 0.22394108772277832, 0.1659022569656372, 0.44383788108825684, 0.13484662771224976, 0.21665799617767334, 0.4084765315055847, 0.2861030101776123, 0.3197672963142395, 0.19206470251083374, 0.34162241220474243, 0.2721492052078247, 0.21245497465133667, 0.20893073081970215, 0.3192269802093506, 0.26700204610824585, 0.3755199909210205, 0.38203495740890503, 0.1662830114364624, 0.3318672776222229, 0.35037505626678467, 0.17176848649978638, 0.22978293895721436, 0.17362606525421143, 0.24385303258895874, 0.07906830310821533, 0.13192027807235718, 0.14727210998535156, 0.17660033702850342, 0.13679832220077515, 0.16725701093673706, 0.5348799824714661, 0.21530479192733765, 0.32256561517715454, 0.3368549346923828, 0.21289241313934326, 0.10241639614105225, 0.27711963653564453, 0.23943036794662476, 0.13580501079559326, 0.32603973150253296, 0.23867404460906982, 0.26029688119888306, 0.35628777742385864, 0.31716614961624146, 0.1444782018661499, 0.3942793011665344, 0.5249121785163879, 0.2302892804145813, 0.29427075386047363, 0.1540256142616272, 0.15320807695388794, 0.3002641797065735, 0.16071867942810059, 0.10771942138671875, 0.5138657093048096, 0.23315739631652832, 0.3013395667076111, 0.22180449962615967, 0.08464545011520386, 0.09694451093673706, 0.37363606691360474, 0.20586764812469482, 0.13039112091064453, 0.06711816787719727, 0.26481491327285767, 0.09042268991470337, 0.028781771659851074, 0.16334599256515503, 0.442349910736084, 0.2726534605026245, 0.278664231300354, 0.12291544675827026, 0.2124931812286377, 0.2619161605834961, 0.24816280603408813, 0.07193338871002197, 0.08839172124862671, 0.337424099445343, 0.05177873373031616, 0.1626673936843872, 0.07491165399551392, 0.2524349093437195, 0.1657537817955017, 0.17323654890060425, 0.17092609405517578, 0.15448898077011108, 0.07544982433319092, 0.1512153148651123, 0.06547999382019043, 0.100039541721344, 0.2371625304222107, 0.2511051297187805, 0.2990821599960327, 0.11416387557983398, 0.19856226444244385, 0.273084819316864, 0.10033780336380005, 0.16810345649719238, 0.24090254306793213, 0.22893774509429932, 0.24808281660079956, 0.21651220321655273, 0.13299047946929932, 0.30732792615890503, 0.12392216920852661, 0.09902292490005493, 0.045199453830718994, 0.33461976051330566, 0.15236985683441162, 0.17731952667236328, 0.17960160970687866, 0.05848723649978638, 0.2304639220237732, 0.133128821849823, 0.12274169921875, 0.22808408737182617, 0.46390825510025024, 0.15981870889663696, 0.2213904857635498, 0.24797439575195312, 0.016835391521453857, 0.027342796325683594, 0.19258010387420654, 0.06550395488739014, 0.07802194356918335, 0.11560213565826416, 0.1559649109840393, 0.04814708232879639, 0.11906808614730835, 0.04143339395523071, 0.04647403955459595, 0.4096863865852356, 0.06310814619064331, 0.1825924515724182, 0.2767193913459778, 0.1534816026687622, 0.5267699956893921, 0.2352173924446106, 0.1277865171432495, 0.047786593437194824, 0.11877292394638062, 0.05490225553512573, 0.23710918426513672, 0.14485925436019897, 0.044621407985687256, 0.2745792865753174, 0.09621447324752808, 0.05984002351760864, 0.5035626292228699, 0.377721905708313, 0.34454095363616943, 0.05540221929550171, 0.16008400917053223, 0.14800775051116943, 0.29428356885910034, 0.17638647556304932, 0.23773092031478882, 0.2877219319343567, 0.1233178973197937, 0.07525104284286499, 0.10642701387405396, 0.16172373294830322, 0.3382819890975952, 0.2864276170730591, 0.07798731327056885, 0.08395206928253174, 0.4436408281326294, 0.12403076887130737, 0.14837032556533813, 0.33085304498672485, 0.11883103847503662, 0.22361528873443604, 0.1069299578666687, 0.14108061790466309, 0.16719180345535278, 0.1326804757118225, 0.17190021276474, 0.3147643804550171, 0.33245623111724854, 0.22766351699829102, 0.01998525857925415, 0.20519107580184937, 0.053483009338378906, 0.048088014125823975, 0.23336684703826904, 0.08447891473770142, 0.11973100900650024, 0.14394956827163696, 0.11959117650985718, 0.24399465322494507, 0.17295712232589722, 0.2816585898399353, 0.18087589740753174, 0.20345550775527954, 0.13727569580078125, 0.1377246379852295, 0.27008533477783203, 0.013577818870544434, 0.10120373964309692, 0.2143504023551941, 0.06630945205688477, 0.152715265750885, 0.14809703826904297, 0.2600926160812378, 0.22751116752624512, 0.3560958504676819, 0.11103856563568115, 0.41701239347457886, 0.14794892072677612, 0.11968344449996948, 0.17793279886245728, 0.4093869924545288, 0.38934987783432007, 0.17700040340423584, 0.08066344261169434, 0.12674391269683838, 0.022942960262298584, 0.17575961351394653, 0.05524951219558716, 0.15417242050170898, 0.07913529872894287, 0.11538636684417725, 0.008081138134002686, 0.1744595170021057, 0.05244022607803345, 0.3553672432899475, 0.22718095779418945, 0.220661461353302, 0.2839500308036804, 0.041620612144470215, 0.4120599031448364, 0.2243635058403015, 0.12037009000778198, 0.22050780057907104, 0.19341695308685303, 0.2301321029663086, 0.05387115478515625, 0.320134699344635, 0.5029190182685852, 0.23166269063949585, 0.2468658685684204, 0.45207440853118896, 0.28744369745254517, 0.09107375144958496, 0.25427210330963135, 0.031766653060913086, 0.16969573497772217, 0.5070213079452515, 0.4392932057380676, 0.2745736837387085, 0.1013677716255188, 0.27931827306747437, 0.2970355153083801, 0.12888866662979126, 0.37870436906814575, 0.29542022943496704, 0.17521798610687256, 0.1657819151878357, 0.11149859428405762, 0.10331451892852783, 0.15803194046020508, 0.17754751443862915, 0.1758192777633667, 0.2227810025215149, 0.19890278577804565, 0.15022826194763184, 0.1859775185585022, 0.18251466751098633, 0.0734676718711853, 0.13336056470870972, 0.19213080406188965, 0.2115498185157776, 0.17344963550567627, 0.13591694831848145, 0.1235399842262268, 0.05090534687042236, 0.35462844371795654, 0.12685036659240723, 0.38233304023742676, 0.06796866655349731, 0.17980951070785522, 0.08995562791824341, 0.2020803689956665, 0.12737125158309937, 0.3100651502609253, 0.14773565530776978, 0.21331119537353516, 0.05468928813934326, 0.12779736518859863, 0.13161367177963257, 0.12011325359344482, 0.045258283615112305, 0.12943893671035767, 0.13136273622512817, 0.5046960115432739, 0.407863974571228, 0.22725772857666016, 0.23109954595565796, 0.2838195562362671, 0.23722058534622192, 0.0768965482711792, 0.2915172576904297, 0.17770063877105713, 0.1618174910545349, 0.2001294493675232, 0.06320416927337646, 0.2564663290977478, 0.12328916788101196, 0.25368624925613403, 0.17688912153244019, 0.08541679382324219, 0.10962873697280884, 0.15133535861968994, 0.13448864221572876, 0.09181773662567139, 0.06899547576904297, 0.3232038617134094, 0.031627535820007324, 0.03403663635253906, 0.2919762134552002, 0.05697500705718994, 0.2549746632575989, 0.05517631769180298, 0.19253456592559814, 0.08474713563919067, 0.1130291223526001, 0.47267454862594604, 0.4723087251186371, 0.16063392162322998, 0.23825037479400635, 0.16200077533721924, 0.10747605562210083, 0.10499536991119385, 0.058392345905303955, 0.33645355701446533, 0.279824435710907, 0.15535587072372437, 0.09120655059814453, 0.16383469104766846, 0.10201793909072876, 0.02123314142227173, 0.04123854637145996, 0.14801597595214844, 0.16957885026931763, 0.08043426275253296, 0.2797820568084717, 0.13547492027282715, 0.19783318042755127, 0.31932133436203003, 0.08552879095077515, 0.26860809326171875, 0.22114992141723633, 0.06679892539978027, 0.05799907445907593, 0.18720471858978271, 0.15471428632736206, 0.2726629972457886, 0.22862589359283447, 0.11392825841903687, 0.10262161493301392, 0.19505810737609863, 0.14247846603393555, 0.10193103551864624, 0.030781447887420654, 0.23166519403457642, 0.3243417739868164, 0.5451675057411194, 0.08571875095367432, 0.14738458395004272, 0.2819613814353943, 0.07474410533905029, 0.2356986403465271, 0.25329864025115967, 0.09857839345932007, 0.056534528732299805, 0.20645761489868164, 0.054187893867492676, 0.19432789087295532, 0.33148688077926636, 0.25334739685058594, 0.058052778244018555, 0.11934566497802734, 0.19756847620010376, 0.24392694234848022, 0.1845661997795105, 0.05269908905029297, 0.1095120906829834, 0.03203624486923218, 0.25476837158203125, 0.0979415774345398, 0.10115009546279907, 0.023133039474487305, 0.14885687828063965, 0.15296906232833862, 0.2683636546134949, 0.19810622930526733, 0.18030160665512085, 0.14733731746673584, 0.1758253574371338, 0.14409798383712769, 0.1508830189704895, 0.35507887601852417, 0.07750380039215088, 0.05466538667678833, 0.24843740463256836, 0.07839381694793701, 0.04120290279388428, 0.15794843435287476, 0.22670340538024902, 0.2507956027984619, 0.013570070266723633, 0.20721864700317383, 0.28519052267074585, 0.21728402376174927, 0.07528263330459595, 0.2637068033218384, 0.23077678680419922, 0.2166275978088379, 0.10854637622833252, 0.07826763391494751, 0.3478696942329407, 0.15522068738937378, 0.14945167303085327, 0.20516514778137207, 0.24073278903961182, 0.08901393413543701, 0.25747811794281006, 0.18779981136322021, 0.09952455759048462, 0.03143048286437988, 0.07475274801254272, 0.024869680404663086, 0.13999170064926147, 0.26104891300201416, 0.18949216604232788, 0.15980368852615356, 0.17573463916778564, 0.08007180690765381, 0.022996902465820312, 0.12487071752548218, 0.057505249977111816, 0.12375819683074951, 0.040341973304748535, 0.07140719890594482, 0.12713903188705444, 0.09725123643875122, 0.04335904121398926, 0.10842818021774292, 0.33808499574661255, 0.29711711406707764, 0.0918189287185669, 0.17496436834335327, 0.2245880365371704, 0.036318838596343994, 0.07893449068069458, 0.1431332230567932, 0.2531241178512573, 0.08611190319061279, 0.12279683351516724, 0.1707739233970642, 0.13180124759674072, 0.2310352325439453, 0.12533867359161377, 0.136339008808136, 0.1695588231086731, 0.1537630558013916, 0.21028810739517212, 0.20633411407470703, 0.2648770213127136, 0.259047269821167, 0.17934703826904297, 0.4601894021034241, 0.22219771146774292, 0.36768633127212524, 0.37987786531448364, 0.19531846046447754, 0.1490776538848877, 0.15555709600448608, 0.16090774536132812, 0.16979259252548218, 0.10147428512573242, 0.0630231499671936, 0.07500296831130981, 0.14083105325698853, 0.01771986484527588, 0.1666698455810547, 0.387630820274353, 0.126775324344635, 0.14712530374526978, 0.08775502443313599, 0.18343698978424072, 0.040810346603393555, 0.12692952156066895, 0.30525606870651245, 0.18830782175064087, 0.15275830030441284, 0.1515095829963684, 0.0972101092338562, 0.32949113845825195, 0.18194228410720825, 0.07114112377166748, 0.12919342517852783, 0.09489446878433228, 0.09103089570999146, 0.3636016249656677, 0.33180946111679077, 0.2437407374382019, 0.1770952343940735, 0.20515745878219604, 0.06610888242721558, 0.07523608207702637, 0.20920580625534058, 0.16309553384780884, 0.5185257196426392, 0.16005480289459229, 0.3554087281227112, 0.17567598819732666, 0.27883464097976685, 0.06456053256988525, 0.1427830457687378, 0.21097332239151, 0.07897603511810303, 0.127507746219635, 0.12773782014846802, 0.06549400091171265, 0.2093571424484253, 0.09741836786270142, 0.12472176551818848, 0.15639883279800415, 0.16798841953277588, 0.08052104711532593, 0.22032612562179565, 0.1043054461479187, 0.047771573066711426, 0.09423726797103882, 0.02059352397918701, 0.044982314109802246, 0.2968098521232605, 0.07114613056182861, 0.03574854135513306, 0.09488439559936523, 0.07562988996505737, 0.32779574394226074, 0.41103261709213257, 0.2626625895500183, 0.23583221435546875, 0.375238835811615, 0.40384185314178467, 0.1968572735786438, 0.11077511310577393, 0.2634378671646118, 0.18185096979141235, 0.09894448518753052, 0.15308332443237305, 0.500426173210144, 0.41481220722198486, 0.1547558307647705, 0.020844459533691406, 0.35168546438217163, 0.1100199818611145, 0.13034111261367798, 0.45912837982177734, 0.16955453157424927, 0.23594731092453003, 0.14812308549880981, 0.12080234289169312, 0.1485690474510193, 0.14769864082336426, 0.17630994319915771, 0.36128872632980347, 0.038042306900024414, 0.1815701127052307, 0.1258561611175537, 0.16219711303710938, 0.13165926933288574, 0.3228890895843506, 0.30235934257507324, 0.2851654887199402, 0.054093360900878906, 0.1487063765525818, 0.22606515884399414, 0.17645800113677979, 0.09506040811538696, 0.18049877882003784, 0.20470035076141357, 0.14730149507522583, 0.09170466661453247, 0.35427772998809814, 0.17619001865386963, 0.015252828598022461, 0.09125947952270508, 0.11956167221069336, 0.16263622045516968, 0.25717663764953613, 0.21859949827194214, 0.21156346797943115, 0.05382615327835083, 0.05523788928985596, 0.2858414053916931, 0.30250245332717896, 0.25893330574035645, 0.025002598762512207, 0.15501177310943604, 0.06639689207077026, 0.11886882781982422, 0.04794257879257202, 0.32407116889953613, 0.12803107500076294, 0.263062059879303, 0.08215177059173584, 0.04250955581665039, 0.19261109828948975, 0.017201900482177734, 0.100716233253479, 0.08177518844604492, 0.11523491144180298, 0.1724100112915039, 0.022072672843933105, 0.1478075385093689, 0.2183411717414856, 0.18780100345611572, 0.11672824621200562, 0.14888334274291992, 0.1340336799621582, 0.33508872985839844, 0.49561452865600586, 0.10843080282211304, 0.036019980907440186, 0.2277284860610962, 0.13837039470672607, 0.23697882890701294, 0.03620189428329468, 0.19009947776794434, 0.10224300622940063, 0.13425999879837036, 0.08482855558395386, 0.07902133464813232, 0.13394200801849365], "klass": ["DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "DeepfakeTIMIT", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original"], "pred_label": ["FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL"], "correct_label": ["FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL"]}}
\ No newline at end of file
diff --git a/result/data_april14_Celeb-DF.json b/result/data_april14_Celeb-DF.json
new file mode 100644
index 0000000000000000000000000000000000000000..560904d909ab9046885daa6b35f4f9fcf2105fee
--- /dev/null
+++ b/result/data_april14_Celeb-DF.json
@@ -0,0 +1 @@
+{"video": {"name": ["id43_id41_0001.mp4", "id20_id35_0002.mp4", "id16_id6_0009.mp4", "id33_id29_0006.mp4", "id10_id13_0003.mp4", "id42_id45_0003.mp4", "id25_id28_0010.mp4", "id26_id16_0001.mp4", "id28_id25_0002.mp4", "id23_id4_0006.mp4", "id21_id16_0007.mp4", "id29_id38_0006.mp4", "id40_id44_0005.mp4", "id6_id28_0009.mp4", "id37_id32_0005.mp4", "id9_id6_0001.mp4", "id37_id29_0002.mp4", "id27_id21_0009.mp4", "id21_id6_0009.mp4", "id45_id47_0007.mp4", "id13_id10_0008.mp4", "id44_id47_0005.mp4", "id47_id44_0007.mp4", "id23_id27_0007.mp4", "id0_id3_0005.mp4", "id35_id28_0000.mp4", "id9_id26_0002.mp4", "id9_id23_0002.mp4", "id54_id56_0002.mp4", "id56_id55_0001.mp4", "id28_id17_0008.mp4", "id19_id28_0000.mp4", "id50_id57_0009.mp4", "id30_id23_0006.mp4", "id61_id60_0000.mp4", "id37_id31_0004.mp4", "id30_id35_0004.mp4", "id29_id23_0002.mp4", "id3_id9_0000.mp4", "id6_id21_0009.mp4", "id37_id26_0001.mp4", "id9_id6_0002.mp4", "id40_id39_0009.mp4", "id44_id45_0004.mp4", "id33_id29_0009.mp4", "id28_id25_0000.mp4", "id20_id16_0009.mp4", "id43_id47_0002.mp4", "id41_id43_0001.mp4", "id16_id1_0009.mp4", "id19_id24_0004.mp4", "id60_id61_0001.mp4", "id20_id0_0006.mp4", "id3_id20_0000.mp4", "id26_id9_0003.mp4", "id2_id1_0008.mp4", "id19_id23_0002.mp4", "id50_id49_0003.mp4", "id58_id53_0002.mp4", "id31_id33_0002.mp4", "id21_id17_0005.mp4", "id33_id20_0007.mp4", "id32_id30_0008.mp4", "id4_id3_0006.mp4", "id60_id61_0009.mp4", "id37_id31_0007.mp4", "id23_id16_0005.mp4", "id31_id23_0001.mp4", "id3_id1_0005.mp4", "id30_id33_0000.mp4", "id26_id28_0002.mp4", "id6_id4_0007.mp4", "id34_id38_0001.mp4", "id28_id9_0000.mp4", "id51_id54_0008.mp4", "id51_id53_0006.mp4", "id48_id41_0004.mp4", "id9_id30_0000.mp4", "id1_id21_0005.mp4", "id20_id0_0003.mp4", "id2_id23_0008.mp4", "id20_id34_0003.mp4", "id35_id29_0004.mp4", "id33_id37_0004.mp4", "id39_id46_0001.mp4", "id41_id46_0004.mp4", "id35_id20_0003.mp4", "id34_id29_0007.mp4", "id28_id35_0001.mp4", "id2_id28_0007.mp4", "id32_id31_0007.mp4", "id32_id37_0005.mp4", "id37_id35_0002.mp4", "id30_id17_0002.mp4", "id9_id23_0006.mp4", "id23_id27_0006.mp4", "id17_id1_0007.mp4", "id39_id48_0009.mp4", "id21_id1_0000.mp4", "id28_id32_0009.mp4", "id47_id45_0005.mp4", "id37_id26_0006.mp4", "id28_id3_0002.mp4", "id21_id9_0006.mp4", "id28_id23_0000.mp4", "id6_id28_0005.mp4", "id24_id21_0006.mp4", "id54_id55_0002.mp4", "id32_id21_0007.mp4", "id30_id26_0009.mp4", "id50_id53_0004.mp4", "id58_id51_0002.mp4", "id21_id37_0009.mp4", "id29_id37_0000.mp4", "id26_id28_0000.mp4", "id35_id1_0006.mp4", "id50_id54_0009.mp4", "id17_id6_0009.mp4", "id58_id55_0005.mp4", "id31_id34_0008.mp4", "id28_id16_0003.mp4", "id4_id3_0004.mp4", "id45_id40_0008.mp4", "id2_id16_0009.mp4", "id43_id45_0000.mp4", "id16_id37_0009.mp4", "id32_id35_0004.mp4", "id56_id54_0008.mp4", "id2_id37_0002.mp4", "id3_id20_0001.mp4", "id23_id2_0003.mp4", "id46_id47_0007.mp4", "id33_id23_0003.mp4", "id40_id48_0003.mp4", "id4_id3_0008.mp4", "id54_id57_0004.mp4", "id3_id2_0005.mp4", "id28_id16_0000.mp4", "id56_id57_0006.mp4", "id38_id33_0006.mp4", "id37_id38_0007.mp4", "id23_id16_0001.mp4", "id20_id37_0003.mp4", "id20_id31_0000.mp4", "id39_id48_0000.mp4", "id57_id58_0003.mp4", "id4_id20_0003.mp4", "id0_id20_0004.mp4", "id0_id20_0001.mp4", "id21_id4_0002.mp4", "id16_id1_0002.mp4", "id29_id28_0008.mp4", "id35_id38_0005.mp4", "id54_id52_0008.mp4", "id30_id2_0001.mp4", "id43_id47_0006.mp4", "id9_id16_0001.mp4", "id26_id16_0006.mp4", "id9_id37_0006.mp4", "id20_id32_0007.mp4", "id55_id52_0007.mp4", "id48_id44_0001.mp4", "id20_id16_0000.mp4", "id6_id28_0000.mp4", "id1_id26_0007.mp4", "id53_id55_0004.mp4", "id2_id1_0002.mp4", "id45_id48_0008.mp4", "id41_id45_0001.mp4", "id26_id38_0003.mp4", "id19_id25_0005.mp4", "id29_id26_0007.mp4", "id31_id21_0001.mp4", "id25_id27_0003.mp4", "id45_id42_0000.mp4", "id31_id28_0003.mp4", "id20_id24_0000.mp4", "id21_id33_0009.mp4", "id53_id52_0006.mp4", "id24_id25_0006.mp4", "id1_id2_0007.mp4", "id3_id37_0001.mp4", "id21_id25_0008.mp4", "id23_id6_0005.mp4", "id1_id37_0002.mp4", "id23_id24_0007.mp4", "id53_id49_0002.mp4", "id52_id56_0003.mp4", "id28_id3_0004.mp4", "id38_id34_0006.mp4", "id7_id12_0004.mp4", "id20_id30_0005.mp4", "id55_id51_0007.mp4", "id49_id56_0007.mp4", "id20_id24_0009.mp4", "id21_id30_0007.mp4", "id46_id48_0009.mp4", "id6_id37_0004.mp4", "id54_id49_0001.mp4", "id49_id52_0005.mp4", "id19_id20_0001.mp4", "id33_id38_0005.mp4", "id52_id53_0002.mp4", "id56_id52_0003.mp4", "id58_id55_0002.mp4", "id1_id9_0004.mp4", "id31_id29_0009.mp4", "id30_id1_0005.mp4", "id23_id27_0001.mp4", "id45_id46_0009.mp4", "id1_id23_0004.mp4", "id49_id56_0001.mp4", "id30_id35_0005.mp4", "id55_id50_0004.mp4", "id21_id24_0009.mp4", "id37_id2_0004.mp4", "id9_id31_0001.mp4", "id31_id17_0005.mp4", "id6_id20_0004.mp4", "id21_id20_0007.mp4", "id54_id56_0007.mp4", "id6_id0_0009.mp4", "id25_id28_0000.mp4", "id54_id53_0009.mp4", "id1_id26_0004.mp4", "id49_id55_0001.mp4", "id45_id39_0009.mp4", "id47_id40_0003.mp4", "id23_id4_0003.mp4", "id22_id25_0006.mp4", "id48_id44_0000.mp4", "id46_id45_0003.mp4", "id16_id23_0012.mp4", "id33_id28_0009.mp4", "id28_id26_0001.mp4", "id3_id0_0001.mp4", "id46_id40_0009.mp4", "id6_id1_0007.mp4", "id6_id3_0000.mp4", "id29_id26_0009.mp4", "id49_id54_0005.mp4", "id48_id40_0006.mp4", "id20_id9_0008.mp4", "id60_id59_0002.mp4", "id6_id16_0000.mp4", "id41_id48_0008.mp4", "id0_id23_0000.mp4", "id17_id21_0006.mp4", "id4_id26_0001.mp4", "id45_id41_0000.mp4", "id38_id35_0000.mp4", "id53_id57_0005.mp4", "id55_id51_0009.mp4", "id48_id45_0006.mp4", "id29_id20_0005.mp4", "id48_id44_0003.mp4", "id53_id55_0002.mp4", "id30_id38_0007.mp4", "id58_id57_0001.mp4", "id28_id25_0008.mp4", "id32_id33_0007.mp4", "id30_id28_0000.mp4", "id20_id4_0006.mp4", "id26_id23_0004.mp4", "id52_id49_0004.mp4", "id23_id24_0004.mp4", "id2_id16_0004.mp4", "id30_id9_0008.mp4", "id33_id31_0009.mp4", "id52_id53_0001.mp4", "id22_id21_0002.mp4", "id37_id28_0003.mp4", "id47_id41_0009.mp4", "id25_id23_0010.mp4", "id0_id26_0000.mp4", "id29_id21_0004.mp4", "id30_id17_0009.mp4", "id53_id50_0000.mp4", "id28_id37_0002.mp4", "id10_id13_0002.mp4", "id51_id54_0004.mp4", "id20_id19_0002.mp4", "id35_id32_0002.mp4", "id33_id23_0008.mp4", "id30_id2_0003.mp4", "id53_id56_0003.mp4", "id46_id42_0000.mp4", "id23_id34_0005.mp4", "id31_id28_0001.mp4", "id6_id31_0008.mp4", "id57_id51_0007.mp4", "id3_id30_0008.mp4", "id21_id38_0008.mp4", "id28_id26_0008.mp4", "id0_id9_0001.mp4", "id28_id2_0008.mp4", "id34_id28_0003.mp4", "id32_id26_0008.mp4", "id35_id29_0002.mp4", "id28_id20_0004.mp4", "id32_id30_0003.mp4", "id26_id31_0001.mp4", "id17_id0_0005.mp4", "id48_id41_0007.mp4", "id17_id23_0004.mp4", "id59_id60_0001.mp4", "id21_id26_0005.mp4", "id27_id26_0001.mp4", "id56_id49_0009.mp4", "id21_id4_0006.mp4", "id38_id33_0009.mp4", "id35_id4_0008.mp4", "id29_id28_0007.mp4", "id42_id39_0002.mp4", "id23_id29_0003.mp4", "id30_id32_0009.mp4", "id21_id9_0000.mp4", "id27_id25_0000.mp4", "id25_id24_0008.mp4", "id3_id21_0000.mp4", "id28_id32_0004.mp4", "id57_id54_0000.mp4", "id23_id0_0002.mp4", "id38_id23_0000.mp4", "id31_id9_0003.mp4", "id2_id30_0008.mp4", "id28_id35_0002.mp4", "id25_id27_0008.mp4", "id29_id38_0008.mp4", "id35_id33_0001.mp4", "id2_id35_0009.mp4", "id53_id49_0006.mp4", "id54_id57_0008.mp4", "id23_id35_0006.mp4", "id41_id46_0006.mp4", "id51_id57_0005.mp4", "id42_id46_0003.mp4", "id49_id50_0008.mp4", "id30_id28_0008.mp4", "id17_id2_0006.mp4", "id9_id31_0003.mp4", "id33_id34_0002.mp4", "id48_id41_0009.mp4", "id47_id42_0003.mp4", "id48_id46_0005.mp4", "id44_id45_0005.mp4", "id31_id34_0001.mp4", "id39_id48_0006.mp4", "id2_id26_0003.mp4", "id43_id48_0006.mp4", "id7_id13_0007.mp4", "id28_id20_0009.mp4", "id20_id35_0007.mp4", "id4_id9_0000.mp4", "id50_id55_0005.mp4", "id6_id21_0002.mp4", "id1_id31_0006.mp4", "id1_id2_0004.mp4", "id16_id23_0011.mp4", "id37_id33_0008.mp4", "id21_id1_0006.mp4", "id44_id45_0002.mp4", "id48_id40_0001.mp4", "id21_id16_0009.mp4", "id29_id38_0000.mp4", "id3_id0_0002.mp4", "id16_id30_0001.mp4", "id26_id31_0009.mp4", "id28_id26_0004.mp4", "id56_id52_0002.mp4", "id17_id23_0000.mp4", "id23_id35_0003.mp4", "id2_id23_0005.mp4", "id4_id1_0004.mp4", "id40_id44_0002.mp4", "id38_id33_0004.mp4", "id55_id56_0004.mp4", "id23_id1_0000.mp4", "id38_id30_0001.mp4", "id20_id22_0002.mp4", "id29_id28_0009.mp4", "id26_id22_0000.mp4", "id24_id19_0003.mp4", "id9_id28_0001.mp4", "id13_id7_0008.mp4", "id17_id1_0000.mp4", "id39_id43_0003.mp4", "id19_id27_0006.mp4", "id17_id20_0007.mp4", "id6_id26_0004.mp4", "id1_id31_0003.mp4", "id19_id22_0005.mp4", "id9_id3_0008.mp4", "id29_id21_0000.mp4", "id4_id23_0003.mp4", "id48_id46_0009.mp4", "id26_id24_0003.mp4", "id31_id28_0007.mp4", "id16_id21_0012.mp4", "id23_id37_0001.mp4", "id28_id0_0000.mp4", "id16_id9_0009.mp4", "id26_id35_0000.mp4", "id29_id26_0005.mp4", "id38_id32_0007.mp4", "id37_id2_0001.mp4", "id2_id35_0007.mp4", "id38_id28_0009.mp4", "id2_id26_0006.mp4", "id28_id0_0009.mp4", "id31_id26_0002.mp4", "id56_id52_0008.mp4", "id23_id31_0003.mp4", "id51_id53_0005.mp4", "id38_id21_0001.mp4", "id26_id34_0001.mp4", "id16_id2_0010.mp4", "id49_id58_0004.mp4", "id39_id48_0007.mp4", "id23_id25_0003.mp4", "id29_id32_0001.mp4", "id11_id7_0010.mp4", "id37_id34_0002.mp4", "id9_id35_0002.mp4", "id20_id26_0002.mp4", "id45_id40_0000.mp4", "id22_id25_0001.mp4", "id27_id21_0006.mp4", "id8_id2_0002.mp4", "id23_id20_0007.mp4", "id30_id29_0003.mp4", "id17_id3_0002.mp4", "id23_id6_0006.mp4", "id0_id23_0004.mp4", "id41_id48_0005.mp4", "id2_id9_0009.mp4", "id17_id30_0007.mp4", "id16_id26_0000.mp4", "id52_id49_0007.mp4", "id6_id1_0005.mp4", "id39_id42_0005.mp4", "id28_id6_0001.mp4", "id26_id37_0009.mp4", "id6_id21_0004.mp4", "id22_id20_0002.mp4", "id25_id21_0002.mp4", "id16_id0_0005.mp4", "id53_id54_0005.mp4", "id26_id3_0001.mp4", "id48_id42_0002.mp4", "id35_id1_0002.mp4", "id37_id32_0002.mp4", "id6_id9_0000.mp4", "id2_id23_0000.mp4", "id25_id26_0008.mp4", "id49_id52_0000.mp4", "id9_id17_0008.mp4", "id11_id7_0003.mp4", "id35_id34_0009.mp4", "id4_id0_0000.mp4", "id22_id28_0004.mp4", "id27_id22_0004.mp4", "id23_id29_0004.mp4", "id29_id34_0008.mp4", "id23_id3_0002.mp4", "id56_id58_0002.mp4", "id43_id41_0008.mp4", "id20_id19_0008.mp4", "id5_id61_0008.mp4", "id21_id31_0006.mp4", "id25_id19_0003.mp4", "id3_id9_0004.mp4", "id26_id25_0004.mp4", "id39_id40_0005.mp4", "id55_id51_0004.mp4", "id43_id40_0008.mp4", "id1_id31_0009.mp4", "id31_id28_0002.mp4", "id54_id51_0008.mp4", "id30_id32_0004.mp4", "id20_id27_0002.mp4", "id31_id17_0009.mp4", "id1_id3_0006.mp4", "id2_id30_0001.mp4", "id3_id1_0006.mp4", "id25_id23_0003.mp4", "id4_id3_0003.mp4", "id37_id6_0007.mp4", "id26_id33_0001.mp4", "id47_id41_0004.mp4", "id35_id28_0003.mp4", "id23_id29_0001.mp4", "id6_id1_0001.mp4", "id28_id2_0001.mp4", "id49_id57_0006.mp4", "id24_id19_0000.mp4", "id45_id40_0006.mp4", "id30_id3_0008.mp4", "id50_id56_0008.mp4", "id3_id4_0008.mp4", "id31_id28_0009.mp4", "id56_id49_0006.mp4", "id7_id12_0002.mp4", "id37_id31_0009.mp4", "id21_id26_0009.mp4", "id35_id1_0008.mp4", "id21_id31_0005.mp4", "id47_id43_0009.mp4", "id46_id42_0004.mp4", "id22_id24_0004.mp4", "id39_id45_0004.mp4", "id28_id29_0007.mp4", "id25_id27_0004.mp4", "id19_id21_0007.mp4", "id3_id20_0008.mp4", "id48_id42_0000.mp4", "id49_id54_0003.mp4", "id24_id19_0004.mp4", "id45_id40_0002.mp4", "id39_id44_0005.mp4", "id39_id47_0009.mp4", "id10_id11_0003.mp4", "id23_id24_0006.mp4", "id28_id34_0000.mp4", "id31_id1_0007.mp4", "id54_id50_0002.mp4", "id23_id20_0005.mp4", "id6_id23_0008.mp4", "id55_id51_0008.mp4", "id35_id6_0001.mp4", "id51_id58_0008.mp4", "id16_id30_0003.mp4", "id23_id20_0009.mp4", "id3_id26_0004.mp4", "id43_id46_0005.mp4", "id54_id49_0009.mp4", "id46_id44_0000.mp4", "id34_id26_0008.mp4", "id35_id33_0005.mp4", "id20_id3_0009.mp4", "id1_id0_0004.mp4", "id4_id23_0009.mp4", "id53_id58_0008.mp4", "id4_id1_0007.mp4", "id52_id50_0006.mp4", "id29_id30_0000.mp4", "id23_id9_0006.mp4", "id21_id23_0005.mp4", "id37_id6_0001.mp4", "id17_id28_0005.mp4", "id53_id51_0007.mp4", "id31_id20_0002.mp4", "id16_id3_0011.mp4", "id35_id29_0008.mp4", "id21_id29_0001.mp4", "id31_id35_0005.mp4", "id29_id35_0002.mp4", "id4_id28_0003.mp4", "id54_id55_0000.mp4", "id19_id24_0009.mp4", "id34_id35_0007.mp4", "id13_id7_0012.mp4", "id9_id28_0005.mp4", "id3_id28_0006.mp4", "id41_id40_0007.mp4", "id32_id37_0004.mp4", "id34_id35_0009.mp4", "id60_id59_0007.mp4", "id1_id4_0002.mp4", "id21_id22_0008.mp4", "id48_id43_0005.mp4", "id40_id44_0003.mp4", "id19_id25_0008.mp4", "id21_id28_0007.mp4", "id17_id3_0009.mp4", "id2_id30_0002.mp4", "id44_id39_0003.mp4", "id21_id19_0009.mp4", "id31_id26_0003.mp4", "id48_id39_0003.mp4", "id53_id52_0000.mp4", "id37_id2_0002.mp4", "id21_id24_0007.mp4", "id4_id31_0002.mp4", "id27_id23_0008.mp4", "id37_id30_0004.mp4", "id43_id41_0009.mp4", "id29_id38_0005.mp4", "id3_id21_0002.mp4", "id39_id45_0008.mp4", "id37_id34_0001.mp4", "id32_id26_0006.mp4", "id35_0008.mp4", "id61_0005.mp4", "id60_0007.mp4", "id17_0001.mp4", "id0_0007.mp4", "id49_0003.mp4", "id6_0006.mp4", "id53_0003.mp4", "id57_0003.mp4", "id28_0002.mp4", "id24_0000.mp4", "id2_0009.mp4", "id2_0003.mp4", "id51_0007.mp4", "id39_0003.mp4", "id16_0011.mp4", "id6_0000.mp4", "id29_0006.mp4", "id16_0007.mp4", "id23_0008.mp4", "id11_0000.mp4", "id55_0002.mp4", "id3_0003.mp4", "id60_0004.mp4", "id16_0009.mp4", "id57_0009.mp4", "id57_0007.mp4", "id49_0005.mp4", "id40_0000.mp4", "id0_0009.mp4", "id5_0006.mp4", "id60_0008.mp4", "id44_0001.mp4", "id30_0002.mp4", "id45_0009.mp4", "id21_0000.mp4", "id22_0008.mp4", "id5_0000.mp4", "id2_0002.mp4", "id45_0007.mp4", "id6_0003.mp4", "id27_0004.mp4", "id39_0007.mp4", "id44_0003.mp4", "id43_0008.mp4", "id31_0007.mp4", "id35_0009.mp4", "id49_0000.mp4", "id21_0005.mp4", "id28_0006.mp4", "id8_0004.mp4", "id51_0001.mp4", "id33_0001.mp4", "id27_0001.mp4", "id41_0008.mp4", "id60_0009.mp4", "id30_0003.mp4", "id45_0004.mp4", "id12_0000.mp4", "id8_0000.mp4", "id33_0009.mp4", "id38_0000.mp4", "id10_0007.mp4", "id50_0008.mp4", "id61_0001.mp4", "id59_0007.mp4", "id0_0006.mp4", "id13_0015.mp4", "id38_0005.mp4", "id43_0004.mp4", "id13_0007.mp4", "id26_0004.mp4", "id26_0006.mp4", "id4_0000.mp4", "id52_0001.mp4", "id38_0006.mp4", "id32_0004.mp4", "id25_0006.mp4", "id27_0003.mp4", "id52_0005.mp4", "id57_0005.mp4", "id59_0004.mp4", "id56_0005.mp4", "id35_0003.mp4", "id4_0009.mp4", "id11_0001.mp4", "id38_0001.mp4", "id37_0004.mp4", "id17_0006.mp4", "id25_0007.mp4", "id32_0006.mp4", "id22_0004.mp4", "id48_0003.mp4", "id26_0005.mp4", "id4_0003.mp4", "id5_0008.mp4", "id24_0002.mp4", "id10_0002.mp4", "id43_0000.mp4", "id38_0009.mp4", "id35_0007.mp4", "id1_0004.mp4", "id52_0002.mp4", "id44_0004.mp4", "id46_0009.mp4", "id9_0007.mp4", "id26_0007.mp4", "id56_0000.mp4", "id11_0002.mp4", "id23_0006.mp4", "id37_0007.mp4", "id24_0005.mp4", "id33_0005.mp4", "id47_0000.mp4", "id59_0001.mp4", "id31_0003.mp4", "id10_0008.mp4", "id51_0006.mp4", "id10_0003.mp4", "id21_0004.mp4", "id29_0000.mp4", "id33_0000.mp4", "id55_0005.mp4", "id45_0008.mp4", "id28_0004.mp4", "id32_0007.mp4", "id19_0008.mp4", "id2_0005.mp4", "id27_0007.mp4", "id49_0008.mp4", "id22_0002.mp4", "id16_0005.mp4", "id53_0002.mp4", "id32_0001.mp4", "id10_0005.mp4", "id38_0007.mp4", "id4_0006.mp4", "id31_0009.mp4", "id46_0002.mp4", "id33_0008.mp4", "id30_0007.mp4", "id48_0008.mp4", "id0_0004.mp4", "id24_0004.mp4", "id40_0003.mp4", "id16_0001.mp4", "id22_0001.mp4", "id28_0009.mp4", "id60_0001.mp4", "id34_0002.mp4", "id41_0005.mp4", "id60_0000.mp4", "id20_0001.mp4", "id58_0004.mp4", "id42_0001.mp4", "id45_0006.mp4", "id23_0003.mp4", "id9_0009.mp4", "id40_0009.mp4", "id47_0002.mp4", "id50_0004.mp4", "id33_0004.mp4", "id55_0001.mp4", "id30_0000.mp4", "id2_0000.mp4", "id54_0007.mp4", "id30_0005.mp4", "id37_0006.mp4", "id33_0007.mp4", "id34_0006.mp4", "id11_0008.mp4", "id19_0001.mp4", "id52_0006.mp4", "id3_0006.mp4", "id49_0007.mp4", "id58_0009.mp4", "id13_0000.mp4", "id32_0008.mp4", "id21_0003.mp4", "id23_0002.mp4", "id22_0000.mp4", "id3_0001.mp4", "id2_0007.mp4", "id53_0007.mp4", "id53_0008.mp4", "id0_0005.mp4", "id21_0001.mp4", "id34_0001.mp4", "id13_0009.mp4", "id12_0006.mp4", "id3_0002.mp4", "id36_0002.mp4", "id39_0000.mp4", "id26_0002.mp4", "id57_0008.mp4", "id25_0010.mp4", "id53_0005.mp4", "id1_0001.mp4", "id38_0003.mp4", "id58_0007.mp4", "id8_0006.mp4", "id26_0009.mp4", "id16_0002.mp4", "id54_0000.mp4", "id7_0009.mp4", "id5_0005.mp4", "id23_0007.mp4", "id17_0005.mp4", "id20_0005.mp4", "id7_0005.mp4", "id59_0002.mp4", "id36_0006.mp4", "id59_0009.mp4", "id59_0006.mp4", "id21_0009.mp4", "id20_0003.mp4", "id17_0007.mp4", "id48_0005.mp4", "id34_0003.mp4", "id40_0001.mp4", "id53_0006.mp4", "id17_0003.mp4", "id36_0000.mp4", "id22_0009.mp4", "id32_0005.mp4", "id36_0007.mp4", "id48_0000.mp4", "id27_0009.mp4", "id29_0004.mp4", "id19_0000.mp4", "id50_0009.mp4", "id16_0010.mp4", "id33_0003.mp4", "id48_0002.mp4", "id1_0008.mp4", "id13_0014.mp4", "id47_0007.mp4", "id52_0007.mp4", "id30_0006.mp4", "id50_0006.mp4", "id58_0008.mp4", "id46_0006.mp4", "id13_0012.mp4", "id13_0003.mp4", "id19_0007.mp4", "id40_0006.mp4", "id23_0000.mp4", "id43_0007.mp4", "id20_0000.mp4", "id9_0000.mp4", "id13_0005.mp4", "id3_0008.mp4", "id60_0006.mp4", "id54_0006.mp4", "id59_0003.mp4", "id45_0002.mp4", "id61_0002.mp4", "id41_0000.mp4", "id31_0001.mp4", "id9_0005.mp4", "id10_0006.mp4", "id5_0003.mp4", "id39_0002.mp4", "id31_0008.mp4", "id0_0000.mp4", "id34_0005.mp4", "id61_0007.mp4", "id55_0006.mp4", "id8_0001.mp4", "id56_0002.mp4", "id17_0002.mp4", "id61_0008.mp4", "id9_0004.mp4", "id24_0001.mp4", "id56_0003.mp4", "id22_0003.mp4", "id51_0003.mp4", "id46_0005.mp4", "id21_0006.mp4", "id45_0001.mp4", "id8_0008.mp4", "id25_0008.mp4", "id35_0005.mp4", "id60_0005.mp4", "id12_0002.mp4", "id7_0002.mp4", "id4_0002.mp4", "id37_0000.mp4", "id23_0004.mp4", "id50_0002.mp4", "id46_0008.mp4", "id4_0008.mp4", "id30_0001.mp4", "id25_0000.mp4", "id41_0004.mp4", "id2_0001.mp4", "id7_0003.mp4", "id52_0004.mp4", "id29_0008.mp4", "id60_0003.mp4", "id31_0004.mp4", "id50_0007.mp4", "id24_0009.mp4", "id8_0003.mp4", "id25_0004.mp4", "id35_0000.mp4", "id55_0007.mp4", "id53_0009.mp4", "id53_0001.mp4", "id3_0004.mp4", "id1_0007.mp4", "id21_0002.mp4", "id10_0004.mp4", "id57_0004.mp4", "id1_0009.mp4", "id9_0002.mp4", "id35_0006.mp4", "id19_0004.mp4", "id25_0002.mp4", "id11_0006.mp4", "id54_0004.mp4", "id45_0000.mp4", "id1_0006.mp4", "id27_0006.mp4", "id2_0004.mp4", "id5_0007.mp4", "id40_0008.mp4", "id13_0002.mp4", "id17_0009.mp4", "id36_0005.mp4", "id50_0005.mp4", "id5_0001.mp4", "id47_0004.mp4", "id47_0009.mp4", "id6_0005.mp4", "id5_0004.mp4", "id26_0008.mp4", "id13_0008.mp4", "id29_0001.mp4", "id34_0008.mp4", "id1_0005.mp4", "id28_0007.mp4", "id11_0010.mp4", "id24_0003.mp4", "id28_0000.mp4", "id61_0009.mp4", "id34_0004.mp4", "id9_0008.mp4", "id37_0002.mp4", "id52_0009.mp4", "id4_0001.mp4", "id17_0004.mp4", "id40_0007.mp4", "id20_0008.mp4", "id1_0000.mp4", "id48_0006.mp4", "id40_0005.mp4", "id11_0004.mp4", "id12_0004.mp4", "id1_0002.mp4", "id37_0008.mp4", "id34_0007.mp4", "id36_0008.mp4", "id34_0000.mp4", "id46_0004.mp4", "id39_0005.mp4", "id36_0009.mp4", "id47_0005.mp4", "id25_0001.mp4", "id28_0001.mp4", "id52_0000.mp4", "id10_0000.mp4", "id39_0001.mp4", "id33_0006.mp4", "id36_0004.mp4", "id7_0008.mp4", "id51_0005.mp4", "id51_0000.mp4", "id2_0006.mp4", "id39_0004.mp4", "id50_0000.mp4", "id43_0009.mp4", "id26_0003.mp4", "id61_0003.mp4", "id7_0004.mp4", "id46_0001.mp4", "id23_0005.mp4", "id1_0003.mp4", "id20_0009.mp4", "id27_0002.mp4", "id16_0004.mp4", "id50_0001.mp4", "id55_0003.mp4", "id30_0008.mp4", "id49_0001.mp4", "id19_0005.mp4", "id6_0008.mp4", "id48_0004.mp4", "id3_0000.mp4", "id54_0003.mp4", "id59_0008.mp4", "id38_0002.mp4", "id41_0009.mp4", "id37_0009.mp4", "id23_0001.mp4", "id36_0003.mp4", "id11_0005.mp4", "id23_0009.mp4", "id58_0001.mp4", "id7_0007.mp4", "id29_0009.mp4", "id55_0004.mp4", "id51_0009.mp4", "id22_0007.mp4", "id8_0005.mp4", "id47_0003.mp4", "id52_0008.mp4", "id47_0001.mp4", "id40_0002.mp4", "id58_0005.mp4", "id19_0003.mp4", "id46_0007.mp4", "id48_0009.mp4", "id16_0012.mp4", "id31_0002.mp4", "id54_0005.mp4", "id6_0007.mp4", "id4_0007.mp4", "id47_0006.mp4", "id56_0008.mp4", "id42_0003.mp4", "id16_0008.mp4", "id58_0000.mp4", "id56_0007.mp4", "id58_0003.mp4", "id32_0002.mp4", "id7_0001.mp4", "id12_0001.mp4", "id53_0000.mp4", "id3_0005.mp4", "id51_0002.mp4", "id5_0009.mp4", "id9_0001.mp4", "id31_0006.mp4", "id11_0009.mp4", "id0_0003.mp4", "id36_0001.mp4", "id57_0001.mp4", "id32_0000.mp4", "id38_0004.mp4", "id4_0004.mp4", "id42_0002.mp4", "id41_0006.mp4", "id11_0007.mp4", "id41_0007.mp4", "id58_0002.mp4", "id10_0001.mp4", "id25_0009.mp4", "id26_0000.mp4", "id39_0009.mp4", "id44_0005.mp4", "id54_0001.mp4", "id16_0000.mp4", "id56_0009.mp4", "id30_0009.mp4", "id7_0000.mp4", "id13_0001.mp4", "id20_0004.mp4", "id20_0006.mp4", "id3_0007.mp4", "id54_0002.mp4", "id49_0009.mp4", "id22_0006.mp4", "id32_0009.mp4", "id40_0004.mp4", "id16_0003.mp4", "id6_0004.mp4", "id19_0002.mp4", "id49_0004.mp4", "id57_0000.mp4", "id41_0003.mp4", "id27_0005.mp4", "id28_0003.mp4", "id20_0007.mp4", "id16_0013.mp4", "id49_0006.mp4", "id25_0005.mp4", "id35_0002.mp4", "id29_0003.mp4", "id41_0001.mp4", "id34_0009.mp4", "id39_0008.mp4", "id37_0001.mp4", "id2_0008.mp4", "id58_0006.mp4", "id59_0000.mp4", "id43_0003.mp4", "id6_0001.mp4", "id28_0008.mp4", "id43_0002.mp4", "id28_0005.mp4", "id31_0005.mp4", "id39_0006.mp4", "id29_0007.mp4", "id19_0009.mp4", "id42_0000.mp4", "id54_0008.mp4", "id0_0002.mp4", "id43_0006.mp4", "id6_0002.mp4", "id59_0005.mp4", "id50_0003.mp4", "id24_0006.mp4", "id24_0008.mp4", "id44_0002.mp4", "id56_0004.mp4", "id46_0003.mp4", "id5_0002.mp4", "id48_0001.mp4", "id43_0001.mp4", "id17_0000.mp4", "id61_0000.mp4", "id8_0007.mp4", "id53_0004.mp4", "id13_0004.mp4", "id37_0003.mp4", "id44_0000.mp4", "id35_0001.mp4", "id32_0003.mp4", "id61_0006.mp4", "id46_0000.mp4", "id49_0002.mp4", "id13_0006.mp4", "id0_0001.mp4", "id56_0006.mp4", "id61_0004.mp4", "id55_0009.mp4", "id56_0001.mp4", "id25_0003.mp4", "id17_0008.mp4", "id3_0009.mp4", "id55_0008.mp4", "id8_0009.mp4", "id26_0001.mp4", "id21_0008.mp4", "id60_0002.mp4", "id21_0007.mp4", "id20_0002.mp4", "id54_0009.mp4", "id13_0010.mp4", "id13_0013.mp4", "id57_0006.mp4", "id4_0005.mp4", "id29_0002.mp4", "id27_0000.mp4", "id8_0002.mp4", "id6_0009.mp4", "id30_0004.mp4", "id55_0000.mp4", "id51_0008.mp4", "id22_0005.mp4", "id9_0006.mp4", "id11_0003.mp4", "id43_0005.mp4", "id35_0004.mp4", "id38_0008.mp4", "id47_0008.mp4", "id19_0006.mp4", "id27_0008.mp4", "id12_0003.mp4", "id0_0008.mp4", "id29_0005.mp4", "id9_0003.mp4", "id10_0009.mp4", "id57_0002.mp4", "id37_0005.mp4", "id13_0011.mp4", "id42_0004.mp4", "id31_0000.mp4", "id16_0006.mp4", "id45_0003.mp4", "id41_0002.mp4", "id24_0007.mp4", "id52_0003.mp4", "id7_0006.mp4", "id12_0005.mp4", "id48_0007.mp4", "id45_0005.mp4", "id33_0002.mp4", "id51_0004.mp4"], "pred": [0.9049304127693176, 0.9334169030189514, 0.9125046133995056, 0.8442766070365906, 0.9888551235198975, 0.9265003204345703, 0.9375059604644775, 0.27301502227783203, 0.9865151047706604, 0.8266230821609497, 0.8408178687095642, 0.6402775049209595, 0.9991927146911621, 0.9989108443260193, 0.9246751666069031, 0.9857013821601868, 0.9911975860595703, 0.9970452785491943, 0.9986633062362671, 0.9184817671775818, 0.5613716244697571, 0.9600786566734314, 0.9868799448013306, 0.9994282722473145, 0.8620352149009705, 0.8899058103561401, 0.9988538026809692, 0.9977072477340698, 0.7624931931495667, 0.9989054203033447, 0.9803078174591064, 0.999025285243988, 0.5445606112480164, 0.8059937357902527, 0.9448681473731995, 0.9990197420120239, 0.9405457973480225, 0.7934823632240295, 0.6746483445167542, 0.9975679516792297, 0.9228529334068298, 0.9839715957641602, 0.5042939186096191, 0.9898456931114197, 0.6766539812088013, 0.6614354848861694, 0.9987278580665588, 0.9273276925086975, 0.9872313141822815, 0.9825079441070557, 0.9972560405731201, 0.9449518918991089, 0.8760380148887634, 0.7204744815826416, 0.9952993988990784, 0.9998893737792969, 0.9156658053398132, 0.9760566353797913, 0.9894698858261108, 0.9501434564590454, 0.9419049620628357, 0.9999770522117615, 0.9857081770896912, 0.8614304661750793, 0.7882617712020874, 0.998769998550415, 0.959502637386322, 0.9997270703315735, 0.8541216254234314, 0.9457547664642334, 0.9892469644546509, 0.9987024664878845, 0.918121337890625, 0.60257488489151, 0.8993815183639526, 0.8518669605255127, 0.8470008373260498, 0.9980039000511169, 0.9882696270942688, 0.9972108602523804, 0.999937891960144, 0.999742329120636, 0.6790089011192322, 0.9992795586585999, 0.9997159838676453, 0.9154474139213562, 0.9864346981048584, 0.9920104146003723, 0.9996821880340576, 0.9999381303787231, 0.9409649968147278, 0.9994194507598877, 0.9997210502624512, 0.9425525665283203, 0.982149600982666, 0.6206291913986206, 0.8637682199478149, 0.987474799156189, 0.9645647406578064, 0.982179582118988, 0.8533310294151306, 0.9995229244232178, 0.8021513223648071, 0.9992057085037231, 0.6400915384292603, 0.9943258762359619, 0.8070068359375, 0.6339424252510071, 0.9499875903129578, 0.9993112087249756, 0.9524405598640442, 0.9976859092712402, 0.9956268668174744, 0.9141618609428406, 0.9998214840888977, 0.9052069187164307, 0.9032909274101257, 0.9035014510154724, 0.988904595375061, 0.999232292175293, 0.9969443082809448, 0.9318135380744934, 0.9629398584365845, 0.8124497532844543, 0.8087577819824219, 0.9971462488174438, 0.9998191595077515, 0.9976741671562195, 0.9995905160903931, 0.9755356311798096, 0.8758669495582581, 0.8288025259971619, 0.9828982353210449, 0.9571189880371094, 0.9643374085426331, 0.7794814705848694, 0.5218032002449036, 0.557264506816864, 0.8864148259162903, 0.9955492615699768, 0.994251549243927, 0.8995100259780884, 0.9997596144676208, 0.8730080723762512, 0.9463218450546265, 0.9946808815002441, 0.9996715784072876, 0.9432015419006348, 0.9482523202896118, 0.8992785215377808, 0.4982859194278717, 0.9714369773864746, 0.9640925526618958, 0.9925052523612976, 0.8958846926689148, 0.9989000558853149, 0.9944208264350891, 0.9632864594459534, 0.9896480441093445, 0.9920542240142822, 0.9158841967582703, 0.7741634249687195, 0.8409118056297302, 0.9999772906303406, 0.9990192651748657, 0.9990418553352356, 0.8668479919433594, 0.8089014887809753, 0.979671835899353, 0.8910982608795166, 0.9994572401046753, 0.998101532459259, 0.9566410779953003, 0.8460898399353027, 0.9746049642562866, 0.9898878335952759, 0.9859052896499634, 0.9841592311859131, 0.8513898253440857, 0.9637824296951294, 0.9448837041854858, 0.7630841135978699, 0.9690133929252625, 0.9987379312515259, 0.9999086856842041, 0.9992465376853943, 0.9203112721443176, 0.8451416492462158, 0.6445128321647644, 0.9934297204017639, 0.7625944018363953, 0.9191869497299194, 0.9089991450309753, 0.9911051392555237, 0.9998867511749268, 0.9365519285202026, 0.8859903812408447, 0.9999198317527771, 0.9024247527122498, 0.9558952450752258, 0.7496740818023682, 0.8588100671768188, 0.9952287077903748, 0.8203213214874268, 0.9996839761734009, 0.8880026936531067, 0.9994924664497375, 0.7463278770446777, 0.9992542266845703, 0.9592204689979553, 0.839810848236084, 0.9592331051826477, 0.9596003890037537, 0.959520161151886, 0.998779833316803, 0.9338169693946838, 0.9990355968475342, 0.9997914433479309, 0.9998887777328491, 0.917650580406189, 0.9025530815124512, 0.9985575675964355, 0.9948305487632751, 0.7695139050483704, 0.9638828635215759, 0.9957094788551331, 0.993678629398346, 0.980649471282959, 0.9408656358718872, 0.9796997308731079, 0.95979243516922, 0.8509438037872314, 0.9950322508811951, 0.8505274653434753, 0.9998549818992615, 0.8760553598403931, 0.6720860004425049, 0.8464288115501404, 0.9999467730522156, 0.7918115854263306, 0.9306102395057678, 0.7509388327598572, 0.9366584420204163, 0.9763615727424622, 0.9948852062225342, 0.9967785477638245, 0.9430627822875977, 0.923549234867096, 0.949874222278595, 0.9963685274124146, 0.9822617173194885, 0.891815721988678, 0.9491202235221863, 0.8454599380493164, 0.5416938662528992, 0.9885128736495972, 0.9745563268661499, 0.9940565228462219, 0.9741263389587402, 0.9835060834884644, 0.9079802632331848, 0.8437721133232117, 0.8425219655036926, 0.9985216856002808, 0.9934700131416321, 0.9206514954566956, 0.9322416186332703, 0.8930855393409729, 0.9155839085578918, 0.9955708980560303, 0.8401092290878296, 0.9970499277114868, 0.8985908627510071, 0.9152418971061707, 0.9600964784622192, 0.8414545059204102, 0.9766495227813721, 0.9951019287109375, 0.9901754260063171, 0.9290804266929626, 0.9718271493911743, 0.7789142727851868, 0.9891974925994873, 0.9053797125816345, 0.7114356756210327, 0.9894875288009644, 0.9221958518028259, 0.9998584985733032, 0.9999089241027832, 0.919736921787262, 0.9842742085456848, 0.7624320983886719, 0.9614719152450562, 0.9961243867874146, 0.9485183358192444, 0.7768088579177856, 0.8464733958244324, 0.9975727796554565, 0.9558455944061279, 0.8914231657981873, 0.9999473094940186, 0.563640832901001, 0.8497775197029114, 0.4989411234855652, 0.8213416934013367, 0.9998033046722412, 0.9979131817817688, 0.9898054003715515, 0.8956587314605713, 0.987756073474884, 0.8558085560798645, 0.9252558350563049, 0.915879487991333, 0.9881813526153564, 0.9570828676223755, 0.8434594869613647, 0.9567779898643494, 0.9994311928749084, 0.9160760641098022, 0.5100481510162354, 0.857492983341217, 0.9859774112701416, 0.8727120161056519, 0.9335705637931824, 0.9732800126075745, 0.9999459981918335, 0.9715930819511414, 0.9714415073394775, 0.9592438340187073, 0.6740520000457764, 0.9948232173919678, 0.9800362586975098, 0.9767503142356873, 0.9487857222557068, 0.9029514193534851, 0.7930575609207153, 0.8486601710319519, 0.9989168643951416, 0.9279761910438538, 0.9062144160270691, 0.993809163570404, 0.9996689558029175, 0.847222089767456, 0.9534276723861694, 0.9637832045555115, 0.9629220366477966, 0.9304707646369934, 0.9989538192749023, 0.9996755719184875, 0.9995822906494141, 0.5648572444915771, 0.9752168655395508, 0.9996947646141052, 0.8554248809814453, 0.9781369566917419, 0.9290450811386108, 0.9999082088470459, 0.43708091974258423, 0.9965492486953735, 0.8929766416549683, 0.9970310926437378, 0.9219664335250854, 0.4908332824707031, 0.9733462333679199, 0.8953752517700195, 0.9466320872306824, 0.8319580554962158, 0.9995212554931641, 0.9648770689964294, 0.9802000522613525, 0.9910898804664612, 0.9921233654022217, 0.9866103529930115, 0.9666208028793335, 0.9972493648529053, 0.9873234033584595, 0.910245418548584, 0.8690957427024841, 0.9667354822158813, 0.6861346364021301, 0.7546114325523376, 0.9934546947479248, 0.47835952043533325, 0.9985808730125427, 0.6260605454444885, 0.9550797939300537, 0.9864908456802368, 0.9848319888114929, 0.9948703050613403, 0.999957263469696, 0.96180260181427, 0.999558687210083, 0.9912912249565125, 0.7778939604759216, 0.9982017278671265, 0.9252403974533081, 0.991518497467041, 0.9569573402404785, 0.9990572929382324, 0.9220952391624451, 0.6051684021949768, 0.8995411396026611, 0.9997386932373047, 0.993470311164856, 0.9544575214385986, 0.8126717209815979, 0.9999288320541382, 0.8344295024871826, 0.9978764057159424, 0.9931002259254456, 0.9985518455505371, 0.9849092960357666, 0.9960576295852661, 0.9228348135948181, 0.8155112862586975, 0.7500094771385193, 0.8433648347854614, 0.9562760591506958, 0.9400294423103333, 0.8292100429534912, 0.9896128177642822, 0.9935387372970581, 0.9995683431625366, 0.9995012283325195, 0.9779567718505859, 0.9975463151931763, 0.734043538570404, 0.9962928891181946, 0.9864115715026855, 0.9978926777839661, 0.9702151417732239, 0.48235100507736206, 0.9806659817695618, 0.9973187446594238, 0.9864465594291687, 0.9332133531570435, 0.9713776707649231, 0.9999138116836548, 0.7276638150215149, 0.9003786444664001, 0.8402112126350403, 0.9992673397064209, 0.9993240833282471, 0.9996970295906067, 0.9624679684638977, 0.6224601864814758, 0.9937485456466675, 0.9864571690559387, 0.9305756688117981, 0.6688494682312012, 0.9314640164375305, 0.9705662727355957, 0.9998120665550232, 0.9975730776786804, 0.9713601469993591, 0.8280355930328369, 0.9999226927757263, 0.7529072761535645, 0.6739504337310791, 0.7876818180084229, 0.9707424640655518, 0.9712210297584534, 0.8629437685012817, 0.9503186345100403, 0.6492555141448975, 0.8733296394348145, 0.8424450159072876, 0.9989075064659119, 0.9974770545959473, 0.9954795241355896, 0.8444902896881104, 0.997011661529541, 0.9990081191062927, 0.8687012195587158, 0.9391975998878479, 0.8087038397789001, 0.9998821020126343, 0.9727391600608826, 0.9397740960121155, 0.9344150424003601, 0.90985107421875, 0.9963236451148987, 0.9864668250083923, 0.9991320371627808, 0.812405526638031, 0.8692823648452759, 0.8782967329025269, 0.9694663882255554, 0.5866105556488037, 0.6693134903907776, 0.9975519180297852, 0.9552650451660156, 0.9736007452011108, 0.9945081472396851, 0.8093761801719666, 0.9117431044578552, 0.8968167901039124, 0.7031295895576477, 0.9992133378982544, 0.7621579170227051, 0.9972475171089172, 0.7797631621360779, 0.9979007840156555, 0.9738873243331909, 0.9992305636405945, 0.8489065170288086, 0.9952968955039978, 0.9545471668243408, 0.7808033227920532, 0.9827216267585754, 0.8815197944641113, 0.9983050227165222, 0.9911931157112122, 0.9992938041687012, 0.9196658134460449, 0.5971109867095947, 0.9425859451293945, 0.8599827289581299, 0.9458077549934387, 0.8490157127380371, 0.958713173866272, 0.9974443316459656, 0.9366334676742554, 0.6267778873443604, 0.9044156670570374, 0.8168454170227051, 0.998623788356781, 0.9740513563156128, 0.8648455739021301, 0.9766392707824707, 0.859573245048523, 0.951000988483429, 0.9867894649505615, 0.9990777969360352, 0.9977850914001465, 0.8543388843536377, 0.866502046585083, 0.9726735949516296, 0.9864359498023987, 0.9973914623260498, 0.5170500874519348, 0.8524960875511169, 0.9958288073539734, 0.9004324078559875, 0.9997979402542114, 0.9571567177772522, 0.7687963247299194, 0.9787697196006775, 0.8868021368980408, 0.999335527420044, 0.6774932146072388, 0.9862273335456848, 0.9821979403495789, 0.7031815052032471, 0.8984429836273193, 0.9999512434005737, 0.8285276889801025, 0.9943023324012756, 0.9896110892295837, 0.9999357461929321, 0.9645019173622131, 0.8715536594390869, 0.997990071773529, 0.943013608455658, 0.9504206776618958, 0.9996527433395386, 0.9995668530464172, 0.8910560607910156, 0.9991127252578735, 0.889803946018219, 0.9256731867790222, 0.9818256497383118, 0.6239970922470093, 0.953127384185791, 0.8165776133537292, 0.9951469302177429, 0.9992262125015259, 0.9482461810112, 0.999845564365387, 0.9878771901130676, 0.9968829154968262, 0.8932557106018066, 0.9499000310897827, 0.9724264144897461, 0.7306203246116638, 0.999149739742279, 0.9974182844161987, 0.5073623657226562, 0.974210262298584, 0.9696283340454102, 0.9653053283691406, 0.952927827835083, 0.19938957691192627, 0.003184378147125244, 0.026364564895629883, 0.5766341090202332, 0.00473862886428833, 0.06527465581893921, 0.0401650071144104, 0.7420300841331482, 0.749232292175293, 0.21933907270431519, 0.3324955105781555, 0.0005000829696655273, 0.0013930201530456543, 0.07810097932815552, 0.09088832139968872, 0.06634366512298584, 0.0638161301612854, 0.0039002299308776855, 0.08167839050292969, 0.4396270513534546, 0.12579584121704102, 0.441875696182251, 0.0016208887100219727, 0.18059790134429932, 0.00016129016876220703, 0.07887578010559082, 0.09471124410629272, 0.11244457960128784, 0.23071622848510742, 0.10933780670166016, 0.0792573094367981, 0.0018768310546875, 0.5390976667404175, 0.22382956743240356, 0.00028765201568603516, 0.06242853403091431, 0.07038909196853638, 0.017644405364990234, 7.915496826171875e-05, 0.23253023624420166, 0.5193948745727539, 0.7296099662780762, 0.1077149510383606, 0.0031051039695739746, 0.026003360748291016, 0.3402553200721741, 0.12381249666213989, 0.2948330044746399, 0.00043278932571411133, 0.2758212089538574, 0.5812305212020874, 0.18860846757888794, 0.3841044306755066, 0.2175508737564087, 0.2604109048843384, 0.5684149265289307, 0.173376202583313, 0.21163183450698853, 0.1846141219139099, 0.018425345420837402, 0.2523903250694275, 0.47094881534576416, 0.010627985000610352, 0.39114850759506226, 0.5, 0.31526118516921997, 0.4850131869316101, 0.0828406810760498, 0.021117031574249268, 0.2086750864982605, 0.03919553756713867, 0.2009108066558838, 0.5163147449493408, 0.002742290496826172, 0.4514915347099304, 0.32123297452926636, 0.7088829874992371, 0.3040475845336914, 0.23314565420150757, 0.3271372318267822, 0.01605778932571411, 0.015840530395507812, 0.024657130241394043, 0.8073418736457825, 0.0952153205871582, 0.15754753351211548, 0.3154223561286926, 0.009514451026916504, 0.016648411750793457, 0.0367048978805542, 0.8423108458518982, 0.29655879735946655, 0.01831662654876709, 0.8610737323760986, 0.0018392205238342285, 0.016378581523895264, 0.03715229034423828, 0.0016970038414001465, 0.2743804454803467, 0.4802677631378174, 0.24503564834594727, 0.08724558353424072, 0.8020316362380981, 0.09833991527557373, 0.01851099729537964, 0.010040044784545898, 0.918498158454895, 0.2931838631629944, 0.12267285585403442, 0.4821482300758362, 0.027797341346740723, 0.0013751387596130371, 0.30018842220306396, 0.010474085807800293, 0.0055751800537109375, 0.24467605352401733, 0.011796116828918457, 0.4993703365325928, 0.005527138710021973, 0.03511923551559448, 0.03163379430770874, 0.448813796043396, 0.9419283866882324, 0.19163882732391357, 0.35798877477645874, 0.4551912546157837, 0.20147401094436646, 0.00036782026290893555, 0.10106760263442993, 0.7803454995155334, 0.4972792863845825, 0.19990617036819458, 0.20013898611068726, 0.04995483160018921, 0.0014223456382751465, 0.32755500078201294, 0.043233633041381836, 0.42310434579849243, 0.03753858804702759, 0.5226877927780151, 0.01621401309967041, 0.511121392250061, 0.22166353464126587, 0.3143966794013977, 0.06586092710494995, 0.21381932497024536, 0.0012863874435424805, 0.0034499168395996094, 0.10261118412017822, 0.19427049160003662, 0.549268364906311, 0.21980100870132446, 0.06048792600631714, 0.0004698038101196289, 0.33519744873046875, 0.8384158611297607, 0.0256081223487854, 0.3995431661605835, 0.17708200216293335, 0.04900306463241577, 0.2679207921028137, 0.060567259788513184, 0.9040517210960388, 0.23234045505523682, 0.06012928485870361, 0.21077555418014526, 0.46479159593582153, 0.303893506526947, 0.011549234390258789, 0.379008948802948, 0.13748252391815186, 0.29538285732269287, 0.7549336552619934, 0.056168437004089355, 0.45574748516082764, 0.2035660743713379, 0.5404508113861084, 0.19638705253601074, 0.10206067562103271, 0.13675063848495483, 0.01741635799407959, 0.06462705135345459, 0.0070719122886657715, 0.33454811573028564, 0.0023702383041381836, 0.6514561772346497, 0.2333739995956421, 0.09227210283279419, 0.34977084398269653, 0.07871025800704956, 0.0039370059967041016, 0.15606117248535156, 0.12319415807723999, 0.46787601709365845, 0.9137527942657471, 0.2051052451133728, 0.6874432563781738, 0.012174725532531738, 0.2694186568260193, 0.11173838376998901, 0.0006366372108459473, 0.46129000186920166, 0.07335853576660156, 0.2351887822151184, 0.0074558258056640625, 0.00042808055877685547, 0.31872546672821045, 0.039846062660217285, 0.00021976232528686523, 0.7310790419578552, 0.004286706447601318, 0.5391860604286194, 0.21381014585494995, 0.17535048723220825, 0.17001253366470337, 0.13915109634399414, 0.5303628444671631, 0.13707959651947021, 0.14492082595825195, 0.2282295823097229, 0.07694834470748901, 0.3952140212059021, 0.1547146439552307, 0.6680203676223755, 0.019667863845825195, 0.07039737701416016, 0.12186574935913086, 0.00017750263214111328, 0.025728225708007812, 0.006032049655914307, 0.11703848838806152, 0.0003147125244140625, 0.3300026059150696, 0.0014399886131286621, 0.02484595775604248, 0.5742251873016357, 0.8082042932510376, 0.053216636180877686, 0.7657437324523926, 0.08990490436553955, 0.05922049283981323, 0.11262202262878418, 0.13568466901779175, 0.41861575841903687, 0.006006121635437012, 0.06304532289505005, 0.18853265047073364, 0.001277327537536621, 0.5025997757911682, 0.24291419982910156, 0.08789241313934326, 0.08331066370010376, 0.5989946722984314, 0.49719715118408203, 0.29545605182647705, 0.7170950770378113, 0.3468942642211914, 0.011626958847045898, 0.12852811813354492, 0.1512553095817566, 0.13088834285736084, 0.07673722505569458, 0.32918572425842285, 0.496660053730011, 0.501146137714386, 0.032125115394592285, 0.01954275369644165, 0.04817962646484375, 0.30480730533599854, 0.07481551170349121, 0.3595883846282959, 0.20483171939849854, 0.10309785604476929, 0.00650709867477417, 0.2317202091217041, 0.6583006978034973, 0.7169403433799744, 0.41630762815475464, 0.5301188230514526, 0.2636844515800476, 0.608655571937561, 0.05560100078582764, 0.7465775012969971, 0.2799590229988098, 0.19612526893615723, 0.02819114923477173, 0.004622042179107666, 0.31754422187805176, 0.7731707096099854, 0.030206620693206787, 0.14575397968292236, 0.008710861206054688, 0.3503825068473816, 0.021634161472320557, 0.08053648471832275, 0.5987367033958435, 0.026567816734313965, 0.494953453540802, 0.053661227226257324, 0.9486934542655945, 0.12302309274673462, 0.507076621055603, 0.14851748943328857, 0.4440048933029175, 0.017387211322784424, 0.2514088749885559, 0.09422767162322998, 0.5182207822799683, 0.02920442819595337, 0.014671564102172852, 0.12221914529800415, 0.07480919361114502, 0.010376930236816406, 0.0103873610496521, 0.38423025608062744, 0.017581045627593994, 0.059953391551971436, 0.0005435943603515625, 0.4731887876987457, 0.5958287119865417, 0.49235594272613525, 0.43101584911346436, 0.07026761770248413, 0.8891772627830505, 0.005928754806518555, 0.06657308340072632, 0.17253166437149048, 0.03134363889694214, 0.26663440465927124, 0.0006794929504394531, 0.5746561288833618, 0.13733285665512085, 0.15042442083358765, 0.12286239862442017, 0.4963282346725464, 0.1720476746559143, 0.12485861778259277, 0.0005462169647216797, 0.023235201835632324, 0.6283208131790161, 0.4813167452812195, 0.056605398654937744, 0.18927335739135742, 0.18701398372650146, 0.044074833393096924, 0.4689491391181946, 0.04855239391326904, 0.3526309132575989, 0.013110339641571045, 0.8251144886016846, 0.19340401887893677, 0.5814680457115173, 0.03726029396057129, 0.5726743936538696, 0.20162731409072876, 0.10120874643325806, 0.002001166343688965, 0.6425818800926208, 0.44281965494155884, 0.5180480480194092, 0.3110988140106201, 0.7373967170715332, 0.019234776496887207, 0.2376226782798767, 0.22389191389083862, 0.47730642557144165, 0.3699323534965515, 0.13452965021133423, 0.002763688564300537, 0.015418529510498047, 0.6051345467567444, 0.03749406337738037, 0.6364832520484924, 0.5089517831802368, 0.22224831581115723, 0.5039854645729065, 0.10209739208221436, 0.023714780807495117, 0.8954068422317505, 0.28351080417633057, 0.5322328805923462, 0.9761161804199219, 0.8987415432929993, 0.3620767593383789, 0.0014836788177490234, 0.0427972674369812, 0.0034590959548950195, 0.33236098289489746, 0.4539473056793213, 0.052282869815826416, 0.08722609281539917, 0.20749646425247192, 0.5907489657402039, 0.05658245086669922, 0.03218942880630493, 0.004132091999053955, 0.6309679746627808, 0.04790860414505005, 0.14676791429519653, 0.35496342182159424, 0.19579344987869263, 0.07147836685180664, 0.10170143842697144, 0.00594019889831543, 0.20903480052947998, 0.07768338918685913, 0.1337299942970276, 0.03306388854980469, 0.00016456842422485352, 0.1486186981201172, 0.017614006996154785, 0.917495846748352, 0.0004920363426208496, 0.12399739027023315, 0.07058513164520264, 0.3310096263885498, 0.07313966751098633, 0.36210882663726807, 0.07449996471405029, 0.07760965824127197, 0.48320385813713074, 0.2326553463935852, 0.4855603873729706, 0.0005932450294494629, 0.33075273036956787, 0.09974968433380127, 0.3873482346534729, 0.1558571457862854, 0.034211695194244385, 0.0263521671295166, 0.2175452709197998, 0.01050412654876709, 0.05775874853134155, 0.41788870096206665, 0.5043261647224426, 0.8785445094108582, 0.06461310386657715, 0.01069486141204834, 0.0948212742805481, 0.06864631175994873, 0.1652403473854065, 0.008568525314331055, 0.23061245679855347, 0.06839603185653687, 0.05866116285324097, 0.5160409212112427, 0.02384573221206665, 0.32412463426589966, 0.6758331060409546, 0.27168983221054077, 0.6287932395935059, 0.07232838869094849, 0.0036426782608032227, 0.12842732667922974, 0.0548136830329895, 0.0639612078666687, 0.00026160478591918945, 0.000261843204498291, 0.05311143398284912, 0.1146230697631836, 0.6930747032165527, 0.4700220227241516, 0.04125398397445679, 0.5410000085830688, 0.012122690677642822, 0.17171138525009155, 0.46375951170921326, 0.055552124977111816, 0.1659284234046936, 0.5736921429634094, 0.5895020961761475, 0.21938729286193848, 0.7748403549194336, 0.09905707836151123, 0.12089741230010986, 0.12669682502746582, 0.9537391662597656, 0.42931675910949707, 0.11984807252883911, 0.35116446018218994, 0.00976574420928955, 0.5, 0.007993936538696289, 0.367365300655365, 0.12231719493865967, 0.4016263484954834, 0.07297784090042114, 0.48506876826286316, 0.0067209601402282715, 0.0011289119720458984, 0.1800774335861206, 0.4652611017227173, 0.4635339379310608, 0.08434504270553589, 0.0035483241081237793, 0.10999822616577148, 0.0008078217506408691, 0.3339809775352478, 0.07524627447128296, 0.2213713526725769, 0.02243119478225708, 0.08137577772140503, 0.4792393743991852, 0.0008040666580200195, 0.73696368932724, 0.18473267555236816, 0.14334863424301147, 0.00017708539962768555, 0.04870516061782837, 0.5119919776916504, 0.06022924184799194, 0.21691083908081055, 0.037498295307159424, 0.5871298909187317, 0.5927237868309021, 0.06748253107070923, 0.14168709516525269, 0.05965554714202881, 0.024477720260620117, 0.13169151544570923, 0.9803075790405273, 0.2433677315711975, 0.6424524784088135, 0.0021056532859802246, 0.10978960990905762, 0.9509477615356445, 0.0647774338722229, 0.1483844518661499, 0.7941625714302063, 0.3180873990058899, 0.4733872413635254, 0.05745494365692139, 0.08194488286972046, 0.5082352161407471, 0.2548205852508545, 0.901533305644989, 0.32665348052978516, 0.09202837944030762, 0.4523738622665405, 0.3433458209037781, 0.00017249584197998047, 0.5223032832145691, 0.5211344361305237, 0.5638790130615234, 0.08828151226043701, 0.596254289150238, 0.24274522066116333, 0.46669381856918335, 0.05637568235397339, 0.22933173179626465, 0.031097233295440674, 0.5889849662780762, 0.0032386183738708496, 0.01760643720626831, 0.02730703353881836, 0.1905994415283203, 0.39350050687789917, 0.22647684812545776, 0.4791853725910187, 0.2164289355278015, 0.49289941787719727, 0.5104331970214844, 0.9742239713668823, 0.26900285482406616, 0.20434802770614624, 0.38319408893585205, 0.00537186861038208, 0.5463703870773315, 0.08760356903076172, 0.30689215660095215, 0.052062928676605225, 0.006942272186279297, 0.2742695212364197, 0.08755314350128174, 0.11918765306472778, 0.08255445957183838, 0.48961055278778076, 0.06338667869567871, 0.03214782476425171, 0.24412286281585693, 0.23537850379943848, 0.05245727300643921, 0.48868048191070557, 0.014250636100769043, 0.45110583305358887, 0.06024515628814697, 0.0753679871559143, 0.1630292534828186, 0.009528696537017822, 0.23977601528167725], "klass": [["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"], ["Celeb-real", "Celeb-synthesis"]], "pred_label": ["FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL"], "correct_label": ["FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL"]}}
\ No newline at end of file
diff --git a/result/data_april14_DFDC.json b/result/data_april14_DFDC.json
new file mode 100644
index 0000000000000000000000000000000000000000..890defd4fe971841a9ac755aab1b92fbe451f433
--- /dev/null
+++ b/result/data_april14_DFDC.json
@@ -0,0 +1 @@
+{"video": {"name": ["bqdjzqhcft.mp4", "cttqtsjvgn.mp4", "aytzyidmgs.mp4", "arlmiizoob.mp4", "aevrfsexku.mp4", "ddepeddixj.mp4", "abofeumbvv.mp4", "avfitoutyn.mp4", "altziddtxi.mp4", "diopzaywor.mp4", "epymyyiblu.mp4", "cfxkpiweqt.mp4", "eajlrktemq.mp4", "dkhlttuvmx.mp4", "ehccixxzoe.mp4", "dakiztgtnw.mp4", "cdyakrxkia.mp4", "avvdgsennp.mp4", "clihsshdkq.mp4", "cknyxaqouy.mp4", "dqzreruvje.mp4", "caifxvsozs.mp4", "cwsbspfzck.mp4", "bkvetcojbt.mp4", "bwuwstvsbw.mp4", "ceymbecxnj.mp4", "cqhngvpgyi.mp4", "cgvrgibpfo.mp4", "dafhtipaml.mp4", "dptbnjnkdg.mp4", "eczrseixwq.mp4", "dtocdfbwca.mp4", "cmbzllswnl.mp4", "degpbqvcay.mp4", "eejswgycjc.mp4", "akzbnazxtz.mp4", "bulkxhhknf.mp4", "bqkdbcqjvb.mp4", "cwqlvzefpg.mp4", "dtbpmdqvao.mp4", "aelfnikyqj.mp4", "dkuayagnmc.mp4", "cobjrlugvp.mp4", "dlpoieqvfb.mp4", "dbzcqmxzaj.mp4", "erlvuvjsjf.mp4", "bqeiblbxtl.mp4", "ebebgmtlcu.mp4", "dzwkmcwkwl.mp4", "arrhsnjqku.mp4", "drcyabprvt.mp4", "eqjscdagiv.mp4", "bqnymlsayl.mp4", "cyboodqqyr.mp4", "errocgcham.mp4", "cxfujlvsuw.mp4", "cwwandrkus.mp4", "esckbnkkvb.mp4", "btiysiskpf.mp4", "abqwwspghj.mp4", "bmehkyanbj.mp4", "aknmpoonls.mp4", "eukvucdetx.mp4", "aufmsmnoye.mp4", "dbtbbhakdv.mp4", "dvumqqhoac.mp4", "cuzrgrbvil.mp4", "dhevettufk.mp4", "apogckdfrz.mp4", "bghphrsfxf.mp4", "edyncaijwx.mp4", "eivxffliio.mp4", "cyclgfjdrv.mp4", "ejkqesyvam.mp4", "cqrskwiqng.mp4", "dnyvfblxpm.mp4", "benmsfzfaz.mp4", "ayqvfdhslr.mp4", "aknbdpmgua.mp4", "ecujsjhscd.mp4", "dhcndnuwta.mp4", "ehevsxtecd.mp4", "alvgwypubw.mp4", "aklqzsddfl.mp4", "bopqhhalml.mp4", "ddhfabwpuz.mp4", "dhcselezer.mp4", "btjlfpzbdu.mp4", "dqppxmoqdl.mp4", "btunxncpjh.mp4", "chviwxsfhg.mp4", "dzyuwjkjui.mp4", "eggbjzxnmg.mp4", "dzieklokdr.mp4", "ekhacizpah.mp4", "beboztfcme.mp4", "brvqtabyxj.mp4", "btmsngnqhv.mp4", "cepxysienc.mp4", "eprybmbpba.mp4", "dkwjwbwgey.mp4", "ehieahnhte.mp4", "apatcsqejh.mp4", "aslsvlvpth.mp4", "dbnygxtwek.mp4", "ddjggcasdw.mp4", "azpuxunqyo.mp4", "bbhpvrmbse.mp4", "bweezhfpzp.mp4", "bxzakyopjf.mp4", "cvaksbpssm.mp4", "ecwaxgutkc.mp4", "awukslzjra.mp4", "bnbuonyoje.mp4", "byyqectxqa.mp4", "duvyaxbzvp.mp4", "bsqgziaylx.mp4", "asaxgevnnp.mp4", "arkroixhey.mp4", "axczxisdtb.mp4", "cferslmfwh.mp4", "beyebyhrph.mp4", "bmbbkwmxqj.mp4", "czfunozvwp.mp4", "afoovlsmtx.mp4", "bqtuuwzdtr.mp4", "btjwbtsgln.mp4", "bhaaboftbc.mp4", "bilnggbxgu.mp4", "dbhoxkblzx.mp4", "acifjvzvpm.mp4", "ddqccgmtka.mp4", "duzuusuajr.mp4", "dboxtiehng.mp4", "dxbqjxrhin.mp4", "dgxrqjdomn.mp4", "aapnvogymq.mp4", "bjsmaqefoi.mp4", "efdyrflcpg.mp4", "adohikbdaz.mp4", "ajwpjhrbcv.mp4", "bndybcqhfr.mp4", "ebkzwjgjhq.mp4", "atyntldecu.mp4", "agqphdxmwt.mp4", "eoewqcpbgt.mp4", "etejaapnxh.mp4", "bguwlyazau.mp4", "chtapglbcj.mp4", "avywawptfc.mp4", "diuzrpqjli.mp4", "dozyddhild.mp4", "cksanfsjhc.mp4", "djvutyvaio.mp4", "dkzvdrzcnr.mp4", "dzvyfiarrq.mp4", "ecnihjlfyt.mp4", "emfbhytfhc.mp4", "crktehraph.mp4", "cdphtzqrvp.mp4", "djxdyjopjd.mp4", "drgjzlxzxj.mp4", "elvvackpjh.mp4", "bdbhekrrwo.mp4", "dfbpceeaox.mp4", "aagfhgtpmv.mp4", "bhbdugnurr.mp4", "ckjaibzfxa.mp4", "abarnvbtwb.mp4", "avibnnhwhp.mp4", "awhmfnnjih.mp4", "bmioepcpsx.mp4", "eudeqjhdfd.mp4", "bmjzrlszhi.mp4", "bydaidkpdp.mp4", "axntxmycwd.mp4", "aorjvbyxhw.mp4", "adylbeequz.mp4", "asdpeebotb.mp4", "atvmxvwyns.mp4", "bpxckdzddv.mp4", "dgzklxjmix.mp4", "cdaxixbosp.mp4", "bdnaqemxmr.mp4", "bwhlgysghg.mp4", "cxttmymlbn.mp4", "ekkdjkirzq.mp4", "aelzhcnwgf.mp4", "dsgpbgsrdm.mp4", "efwfxwwlbw.mp4", "eqnoqyfquo.mp4", "crezycjqyk.mp4", "eiriyukqqy.mp4", "etmcruaihe.mp4", "dxuplhwvig.mp4", "cnilkgvfei.mp4", "axwgcsyphv.mp4", "byunigvnay.mp4", "bpwzipqtxf.mp4", "esyhwdfnxs.mp4", "btohlidmru.mp4", "bgvhtpzknn.mp4", "byfenovjnf.mp4", "bzythlfnhq.mp4", "cpjxareypw.mp4", "deyyistcrd.mp4", "czmqpxrqoh.mp4", "drtbksnpol.mp4", "asmpfjfzif.mp4", "blzydqdfem.mp4", "dulanfulol.mp4", "bdgipnyobr.mp4", "dvakowbgbt.mp4", "aettqgevhz.mp4", "dqnyszdong.mp4", "bchnbulevv.mp4", "atzdznmder.mp4", "crzfebnfgb.mp4", "cwrtyzndpx.mp4", "etdcqxabww.mp4", "bjjbwsqjir.mp4", "azsmewqghg.mp4", "bqhtpqmmqp.mp4", "czkdanyadc.mp4", "cfyduhpbps.mp4", "erqgqacbqe.mp4", "dgmevclvzy.mp4", "bjkmjilrxp.mp4", "akvmwkdyuv.mp4", "augtsuxpzc.mp4", "esxrvsgpvb.mp4", "alaijyygdv.mp4", "eekozbeafq.mp4", "cmxcfkrjiv.mp4", "dcuiiorugd.mp4", "adhsbajydo.mp4", "dsjbknkujw.mp4", "byofowlkki.mp4", "avssvvsdhz.mp4", "eebserckhh.mp4", "bggsurpgpr.mp4", "alninxcyhg.mp4", "awnwkrqibf.mp4", "avgiuextiz.mp4", "bsfmwclnqy.mp4", "btxlttbpkj.mp4", "bmjmjmbglm.mp4", "cglxirfaey.mp4", "ddpvuimigj.mp4", "ahqqqilsxt.mp4", "bffwsjxghk.mp4", "eeyhxisdfh.mp4", "dxuliowugt.mp4", "agdkmztvby.mp4", "axoygtekut.mp4", "eebrkicpry.mp4", "chzieimrwu.mp4", "drsakwyvqv.mp4", "ehtdtkmmli.mp4", "byijojkdba.mp4", "bntlodcfeg.mp4", "etohcvnzbj.mp4", "dlrsbscitn.mp4", "clrycekyst.mp4", "cxrfacemmq.mp4", "egbbcxcuqy.mp4", "ahdbuwqxit.mp4", "bkmdzhfzfh.mp4", "bourlmzsio.mp4", "dkdwxmtpuo.mp4", "aczrgyricp.mp4", "bgmlwsoamc.mp4", "axwovszumc.mp4", "acxnxvbsxk.mp4", "bejhvclboh.mp4", "bofqajtwve.mp4", "bddjdhzfze.mp4", "bvgwelbeof.mp4", "ctpqeykqdp.mp4", "deywhkarol.mp4", "dhoqofwoxa.mp4", "akxoopqjqz.mp4", "andaxzscny.mp4", "dntkzzzcdh.mp4", "bzmdrafeex.mp4", "cppdvdejkc.mp4", "diomeixhrg.mp4", "coadfnerlk.mp4", "eahlqmfvtj.mp4", "ciyoudyhly.mp4", "cycacemkmt.mp4", "ccfoszqabv.mp4", "cyxlcuyznd.mp4", "bpapbctoao.mp4", "dwediigjit.mp4", "doanjploai.mp4", "dofusvhnib.mp4", "boovltmuwi.mp4", "dbhrpizyeq.mp4", "agrmhtjdlk.mp4", "djvtbgwdcc.mp4", "esnntzzajv.mp4", "aqpnvjhuzw.mp4", "atxvxouljq.mp4", "bdxuhamuqx.mp4", "aipfdnwpoo.mp4", "dhjmzhrcav.mp4", "bnjcdrfuov.mp4", "cizlkenljw.mp4", "cqfugiqupm.mp4", "avnqydkqjj.mp4", "bgwmmujlmc.mp4", "curpwogllm.mp4", "ckbdwedgmc.mp4", "ccmonzqfrz.mp4", "dbzpcjntve.mp4", "btugrnoton.mp4", "byqzyxifza.mp4", "bmhvktyiwp.mp4", "ckkuyewywx.mp4", "bhsluedavd.mp4", "eiwopxzjfn.mp4", "dhkwmjxwrn.mp4", "bahdpoesir.mp4", "ellavthztb.mp4", "dsdoseflas.mp4", "dptrzdvwpg.mp4", "atkdltyyen.mp4", "dqqtjcryjv.mp4", "cettndmvzl.mp4", "duycddgtrl.mp4", "dzqwgqewhu.mp4", "amowujxmzc.mp4", "ensyyivobf.mp4", "ahfazfbntc.mp4", "brwrlczjvi.mp4", "ehbnclaukr.mp4", "avmjormvsx.mp4", "dnexlwbcxq.mp4", "eepezmygaq.mp4", "ctzmavwror.mp4", "dqswpjoepo.mp4", "cprhtltsjp.mp4", "bqqpbzjgup.mp4", "ahbweevwpv.mp4", "dubiroskqn.mp4", "ecuvtoltue.mp4", "bseamdrpbj.mp4", "ajqslcypsw.mp4", "dkrvorliqc.mp4", "ebywfrmhtd.mp4", "avtycwsgyb.mp4", "emgjphonqb.mp4", "esyrimvzsa.mp4", "cbltdtxglo.mp4", "aybgughjxh.mp4", "caqbrkogkb.mp4", "eixwxvxbbn.mp4", "ehfiekigla.mp4", "eckvhdusax.mp4", "amaivqofda.mp4", "diqraixiov.mp4", "cbbibzcoih.mp4", "bkwxhglwct.mp4", "ekcrtigpab.mp4", "bgaogsjehq.mp4", "dnhvalzvrt.mp4", "esgftaficx.mp4", "bhpwpydzpo.mp4", "cdbsbdymzd.mp4", "dhxctgyoqj.mp4", "aneclqfpbt.mp4", "dakqwktlbi.mp4", "ebeknhudxq.mp4", "ebchwmwayp.mp4", "dsndhujjjb.mp4", "anpuvshzoo.mp4", "brhalypwoo.mp4", "ehdkmxgtxh.mp4", "eqvuznuwsa.mp4", "aladcziidp.mp4", "bbhtdfuqxq.mp4", "covdcysmbi.mp4", "asvcrfdpnq.mp4", "dcamvmuors.mp4", "acqfdwsrhi.mp4", "blpchvmhxx.mp4", "emaalmsonj.mp4", "bbvgxeczei.mp4", "bwipwzzxxu.mp4", "egghxjjmfg.mp4", "acxwigylke.mp4", "cwbacdwrzo.mp4", "bctvsmddgq.mp4", "cffffbcywc.mp4", "aybumesmpk.mp4", "bvzjkezkms.mp4", "cthdnahrkh.mp4", "apgjqzkoma.mp4", "elginszwtk.mp4"], "pred": [0.996049165725708, 0.9303967356681824, 0.04097092151641846, 0.9997736811637878, 0.8351556658744812, 0.01100015640258789, 0.5, 0.9995641708374023, 0.9999238848686218, 0.9999053478240967, 0.9995412230491638, 0.01159203052520752, 0.9941105842590332, 0.5, 0.23980188369750977, 0.0007495284080505371, 0.5, 0.5, 0.999904990196228, 0.9997631907463074, 0.9999798536300659, 0.1868600845336914, 0.9835029244422913, 0.9813989996910095, 0.9999184608459473, 0.9985512495040894, 0.9989099502563477, 0.9956477284431458, 0.7367646098136902, 0.6725881695747375, 0.9887211918830872, 0.9995837211608887, 0.04313051700592041, 0.7289818525314331, 0.9991757273674011, 0.8874602317810059, 0.005806684494018555, 0.5, 0.5, 0.9972866773605347, 0.0015430450439453125, 0.047649085521698, 0.03868508338928223, 0.014773428440093994, 0.9999035000801086, 0.009514868259429932, 0.9999449253082275, 0.9994075298309326, 0.999101996421814, 0.9996488094329834, 0.057740628719329834, 0.9998791217803955, 0.9316831827163696, 0.9998888373374939, 0.9999438524246216, 0.9998430609703064, 0.9999439120292664, 0.8740382194519043, 0.9999638795852661, 0.9996379613876343, 0.9860612154006958, 0.998909056186676, 0.9999111294746399, 0.9999627470970154, 0.010605692863464355, 0.9995704889297485, 0.9982137680053711, 0.9875952005386353, 0.9997726678848267, 0.9996223449707031, 0.13225972652435303, 0.9998726844787598, 0.9998371601104736, 0.9944904446601868, 0.9999645352363586, 0.9994822144508362, 0.9759429693222046, 0.9925971627235413, 0.9810421466827393, 0.0004705190658569336, 0.07196784019470215, 0.9991201758384705, 0.9999834299087524, 0.9993250966072083, 0.9997191429138184, 0.9998244643211365, 0.9679515361785889, 0.9931546449661255, 0.7632640600204468, 0.7337821125984192, 0.14121979475021362, 0.027934491634368896, 0.07519006729125977, 0.7451900839805603, 0.9650158286094666, 0.001953721046447754, 0.9999622702598572, 0.9999774694442749, 0.9885343313217163, 0.9990391135215759, 0.9998390674591064, 0.8150458931922913, 0.7381488680839539, 0.9957661628723145, 0.008457422256469727, 0.9485133290290833, 0.9999565482139587, 0.8540483713150024, 0.9996598362922668, 0.10544967651367188, 0.9952712655067444, 0.6895678639411926, 0.9999471306800842, 0.8696429133415222, 0.988160252571106, 0.9964925646781921, 0.5000993013381958, 0.00041103363037109375, 0.9997057914733887, 0.999157190322876, 0.49011391401290894, 0.06354320049285889, 0.887673556804657, 0.7363511919975281, 0.015741169452667236, 0.9986363053321838, 0.9999651312828064, 0.7391961812973022, 0.04329049587249756, 0.9999452233314514, 0.9835548400878906, 0.9890756607055664, 0.9991231560707092, 0.9711064100265503, 0.11592954397201538, 0.9997103214263916, 0.7444829940795898, 0.9999563097953796, 0.9992573261260986, 0.9994687438011169, 0.9999478459358215, 0.8974534273147583, 0.9916715621948242, 0.9963730573654175, 0.9962700605392456, 0.5, 0.9999607801437378, 0.5184223651885986, 0.1387057900428772, 0.9988016486167908, 0.685123860836029, 0.9994909763336182, 0.9999461770057678, 0.5, 0.01891082525253296, 0.7616808414459229, 0.9881811141967773, 0.9916871786117554, 0.9998164176940918, 0.993869423866272, 0.0740925669670105, 0.9965721368789673, 0.9999561905860901, 0.9999518394470215, 0.9998563528060913, 0.9294162392616272, 0.9999616146087646, 0.02105128765106201, 0.00069427490234375, 0.7473480701446533, 0.999973475933075, 0.9526512026786804, 0.19267690181732178, 0.0003491640090942383, 0.9982152581214905, 0.002304553985595703, 0.9692386984825134, 0.9999683499336243, 0.9999867677688599, 0.5, 0.9999274015426636, 0.9635540246963501, 0.860281229019165, 0.01620548963546753, 0.00550466775894165, 0.9136499762535095, 0.8375513553619385, 0.9999719262123108, 0.9947052597999573, 0.01942288875579834, 0.0452425479888916, 0.0015822052955627441, 0.9999480247497559, 0.9995903968811035, 0.9752476811408997, 0.9971605539321899, 0.5, 0.9994955062866211, 0.7858392596244812, 0.5, 0.9617496132850647, 0.05902045965194702, 0.8641421794891357, 0.0005273818969726562, 0.03681141138076782, 0.9996786117553711, 0.5, 0.9983562231063843, 0.9999253153800964, 0.9983157515525818, 0.990323543548584, 0.6738431453704834, 0.9737181663513184, 0.9999410510063171, 0.5, 0.9251078367233276, 0.9933308362960815, 0.9966012239456177, 0.9989776015281677, 0.6746715307235718, 0.975037157535553, 0.8131001591682434, 0.9994322061538696, 0.9978350400924683, 0.9999845623970032, 0.9999155402183533, 0.9999450445175171, 0.9999692440032959, 0.9999409317970276, 0.9536359310150146, 0.9739052057266235, 0.9986198544502258, 0.6749523878097534, 0.6172726154327393, 0.8243889808654785, 0.5, 0.05614358186721802, 0.9561864137649536, 0.9938400983810425, 0.9999483823776245, 0.9947161674499512, 0.9999089241027832, 0.9402222037315369, 0.9294715523719788, 0.9999603033065796, 0.9606056809425354, 0.8830916285514832, 0.9999326467514038, 0.9901086091995239, 0.002377331256866455, 0.0025995373725891113, 0.97712242603302, 0.8826204538345337, 0.9902176856994629, 0.9848535060882568, 0.9998641014099121, 0.9996103644371033, 0.9802877306938171, 0.019558191299438477, 0.985441267490387, 0.9982651472091675, 0.9999302625656128, 0.6205282211303711, 0.005817294120788574, 0.9995414018630981, 0.9987343549728394, 0.9989753365516663, 0.9999568462371826, 0.9549756646156311, 0.9941123127937317, 0.9996014833450317, 0.3241405487060547, 0.8654088377952576, 0.9999522566795349, 0.006805002689361572, 0.9997859001159668, 0.0002995133399963379, 0.94221031665802, 0.9999238848686218, 0.990953266620636, 0.5, 0.9929304122924805, 0.5, 0.999904453754425, 0.4967494606971741, 0.0024970173835754395, 0.9752552509307861, 0.9995936155319214, 0.999059796333313, 0.10718679428100586, 0.5, 0.0062209367752075195, 0.002257049083709717, 0.0093764066696167, 0.9999181032180786, 0.9997467994689941, 0.9988099932670593, 0.5412652492523193, 0.998712956905365, 0.2295536994934082, 0.932638943195343, 0.9802274703979492, 0.9994416236877441, 0.9433791041374207, 0.9995340704917908, 0.6017259359359741, 0.9999814033508301, 0.9875968098640442, 0.038549840450286865, 0.9999039173126221, 0.999955952167511, 0.00189894437789917, 0.9519327282905579, 0.9375981688499451, 0.999887228012085, 0.9998840093612671, 0.9993541836738586, 0.9999149441719055, 0.9846013188362122, 0.16766703128814697, 0.994978666305542, 0.9053344130516052, 0.7622538805007935, 0.990816056728363, 0.00038933753967285156, 0.9991679191589355, 0.99869304895401, 0.00024050474166870117, 0.9875993132591248, 0.9995228052139282, 0.008747994899749756, 0.9999722838401794, 0.9996347427368164, 0.5131263136863708, 0.9998458027839661, 0.014073967933654785, 0.9989580512046814, 0.01148688793182373, 0.9999727010726929, 0.9353885650634766, 0.9291960597038269, 0.8978137969970703, 0.0008568763732910156, 0.90003502368927, 0.9079684615135193, 0.9999840259552002, 0.999971866607666, 0.7374624609947205, 0.0038184523582458496, 0.8894175887107849, 0.9993427991867065, 0.9998902678489685, 0.6497886776924133, 0.999839186668396, 0.8888646960258484, 0.0009525418281555176, 0.9729024171829224, 0.9993199110031128, 0.9996400475502014, 0.0014113783836364746, 0.9999369978904724, 0.31210052967071533, 0.9965412616729736, 0.9990426898002625, 0.11088216304779053, 0.9813790321350098, 0.9995422959327698, 0.9999765157699585, 0.9902548789978027, 0.9999764561653137, 0.11437350511550903, 0.9999715089797974, 0.9998171925544739, 0.5, 0.7463883757591248, 0.9999484419822693, 0.06422603130340576, 0.47630661725997925, 0.9458633661270142, 0.9479293823242188, 0.9991300106048584, 0.8568000793457031, 0.9996321797370911, 0.9964450597763062, 0.9928709268569946, 0.9997397661209106, 0.9998317956924438, 0.9991068243980408, 0.5, 0.004941880702972412, 0.0053863525390625, 0.9997317790985107, 0.9746308326721191, 0.8547589778900146, 0.6422008275985718, 0.0016683340072631836, 0.8612804412841797, 0.9672849774360657, 0.9859920740127563, 0.8254151344299316], "klass": ["dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc", "dfdc"], "pred_label": ["FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE"], "correct_label": ["FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE"]}}
\ No newline at end of file
diff --git a/result/data_april14_FF++.json b/result/data_april14_FF++.json
new file mode 100644
index 0000000000000000000000000000000000000000..e06cfc885f083342ae0f4b8cba301ebc00ce0fdb
--- /dev/null
+++ b/result/data_april14_FF++.json
@@ -0,0 +1 @@
+{"video": {"name": ["950_836_neuralTextures.mp4", "951_947_neuralTextures.mp4", "952_882_neuralTextures.mp4", "953_974_neuralTextures.mp4", "954_976_neuralTextures.mp4", "955_078_neuralTextures.mp4", "956_958_neuralTextures.mp4", "957_959_neuralTextures.mp4", "958_956_neuralTextures.mp4", "959_957_neuralTextures.mp4", "960_999_neuralTextures.mp4", "961_069_neuralTextures.mp4", "962_929_neuralTextures.mp4", "963_879_neuralTextures.mp4", "964_174_neuralTextures.mp4", "965_948_neuralTextures.mp4", "966_988_neuralTextures.mp4", "967_984_neuralTextures.mp4", "968_884_neuralTextures.mp4", "969_897_neuralTextures.mp4", "970_973_neuralTextures.mp4", "971_564_neuralTextures.mp4", "972_718_neuralTextures.mp4", "973_970_neuralTextures.mp4", "974_953_neuralTextures.mp4", "975_978_neuralTextures.mp4", "976_954_neuralTextures.mp4", "977_075_neuralTextures.mp4", "978_975_neuralTextures.mp4", "979_875_neuralTextures.mp4", "980_992_neuralTextures.mp4", "981_985_neuralTextures.mp4", "982_004_neuralTextures.mp4", "983_113_neuralTextures.mp4", "984_967_neuralTextures.mp4", "985_981_neuralTextures.mp4", "986_994_neuralTextures.mp4", "987_938_neuralTextures.mp4", "988_966_neuralTextures.mp4", "989_993_neuralTextures.mp4", "990_008_neuralTextures.mp4", "991_064_neuralTextures.mp4", "992_980_neuralTextures.mp4", "993_989_neuralTextures.mp4", "994_986_neuralTextures.mp4", "995_233_neuralTextures.mp4", "996_056_neuralTextures.mp4", "997_040_neuralTextures.mp4", "998_561_neuralTextures.mp4", "999_960_neuralTextures.mp4", "950_836_face2Face.mp4", "951_947_face2Face.mp4", "952_882_face2Face.mp4", "953_974_face2Face.mp4", "954_976_face2Face.mp4", "955_078_face2Face.mp4", "956_958_face2Face.mp4", "957_959_face2Face.mp4", "958_956_face2Face.mp4", "959_957_face2Face.mp4", "960_999_face2Face.mp4", "961_069_face2Face.mp4", "962_929_face2Face.mp4", "963_879_face2Face.mp4", "964_174_face2Face.mp4", "965_948_face2Face.mp4", "966_988_face2Face.mp4", "967_984_face2Face.mp4", "968_884_face2Face.mp4", "969_897_face2Face.mp4", "970_973_face2Face.mp4", "971_564_face2Face.mp4", "972_718_face2Face.mp4", "973_970_face2Face.mp4", "974_953_face2Face.mp4", "975_978_face2Face.mp4", "976_954_face2Face.mp4", "977_075_face2Face.mp4", "978_975_face2Face.mp4", "979_875_face2Face.mp4", "980_992_face2Face.mp4", "981_985_face2Face.mp4", "982_004_face2Face.mp4", "983_113_face2Face.mp4", "984_967_face2Face.mp4", "985_981_face2Face.mp4", "986_994_face2Face.mp4", "987_938_face2Face.mp4", "988_966_face2Face.mp4", "989_993_face2Face.mp4", "990_008_face2Face.mp4", "991_064_face2Face.mp4", "992_980_face2Face.mp4", "993_989_face2Face.mp4", "994_986_face2Face.mp4", "995_233_face2Face.mp4", "996_056_face2Face.mp4", "997_040_face2Face.mp4", "998_561_face2Face.mp4", "999_960_face2Face.mp4", "249_280c23_deepfakes.mp4", "296_293c23_deepfakes.mp4", "513_305c23_deepfakes.mp4", "950_836c23_deepfakes.mp4", "951_947c23_deepfakes.mp4", "952_882c23_deepfakes.mp4", "953_974c23_deepfakes.mp4", "954_976c23_deepfakes.mp4", "955_078c23_deepfakes.mp4", "956_958c23_deepfakes.mp4", "957_959c23_deepfakes.mp4", "958_956c23_deepfakes.mp4", "959_957c23_deepfakes.mp4", "960_999c23_deepfakes.mp4", "961_069c23_deepfakes.mp4", "962_929c23_deepfakes.mp4", "963_879c23_deepfakes.mp4", "964_174c23_deepfakes.mp4", "965_948c23_deepfakes.mp4", "966_988c23_deepfakes.mp4", "967_984c23_deepfakes.mp4", "968_884c23_deepfakes.mp4", "969_897c23_deepfakes.mp4", "970_973c23_deepfakes.mp4", "971_564c23_deepfakes.mp4", "972_718c23_deepfakes.mp4", "973_970c23_deepfakes.mp4", "974_953c23_deepfakes.mp4", "975_978c23_deepfakes.mp4", "976_954c23_deepfakes.mp4", "977_075c23_deepfakes.mp4", "978_975c23_deepfakes.mp4", "979_875c23_deepfakes.mp4", "980_992c23_deepfakes.mp4", "981_985c23_deepfakes.mp4", "982_004c23_deepfakes.mp4", "983_113c23_deepfakes.mp4", "984_967c23_deepfakes.mp4", "985_981c23_deepfakes.mp4", "986_994c23_deepfakes.mp4", "987_938c23_deepfakes.mp4", "988_966c23_deepfakes.mp4", "989_993c23_deepfakes.mp4", "990_008c23_deepfakes.mp4", "991_064c23_deepfakes.mp4", "992_980c23_deepfakes.mp4", "993_989c23_deepfakes.mp4", "994_986c23_deepfakes.mp4", "995_233c23_deepfakes.mp4", "996_056c23_deepfakes.mp4", "997_040c23_deepfakes.mp4", "998_561c23_deepfakes.mp4", "999_960c23_deepfakes.mp4", "950_836c40_Deepfakes.mp4", "951_947c40_Deepfakes.mp4", "952_882c40_Deepfakes.mp4", "953_974c40_Deepfakes.mp4", "954_976c40_Deepfakes.mp4", "955_078c40_Deepfakes.mp4", "956_958c40_Deepfakes.mp4", "957_959c40_Deepfakes.mp4", "958_956c40_Deepfakes.mp4", "959_957c40_Deepfakes.mp4", "960_999c40_Deepfakes.mp4", "961_069c40_Deepfakes.mp4", "962_929c40_Deepfakes.mp4", "963_879c40_Deepfakes.mp4", "964_174c40_Deepfakes.mp4", "965_948c40_Deepfakes.mp4", "966_988c40_Deepfakes.mp4", "967_984c40_Deepfakes.mp4", "968_884c40_Deepfakes.mp4", "969_897c40_Deepfakes.mp4", "970_973c40_Deepfakes.mp4", "971_564c40_Deepfakes.mp4", "972_718c40_Deepfakes.mp4", "973_970c40_Deepfakes.mp4", "974_953c40_Deepfakes.mp4", "975_978c40_Deepfakes.mp4", "976_954c40_Deepfakes.mp4", "977_075c40_Deepfakes.mp4", "978_975c40_Deepfakes.mp4", "979_875c40_Deepfakes.mp4", "980_992c40_Deepfakes.mp4", "981_985c40_Deepfakes.mp4", "982_004c40_Deepfakes.mp4", "983_113c40_Deepfakes.mp4", "984_967c40_Deepfakes.mp4", "985_981c40_Deepfakes.mp4", "986_994c40_Deepfakes.mp4", "987_938c40_Deepfakes.mp4", "988_966c40_Deepfakes.mp4", "989_993c40_Deepfakes.mp4", "990_008c40_Deepfakes.mp4", "991_064c40_Deepfakes.mp4", "992_980c40_Deepfakes.mp4", "993_989c40_Deepfakes.mp4", "994_986c40_Deepfakes.mp4", "995_233c40_Deepfakes.mp4", "996_056c40_Deepfakes.mp4", "997_040c40_Deepfakes.mp4", "998_561c40_Deepfakes.mp4", "999_960c40_Deepfakes.mp4", "01__exit_phone_room_actors_c23.mp4", "01__hugging_happy_actors_c23.mp4", "01__kitchen_pan_actors_c23.mp4", "01__kitchen_still_actors_c23.mp4", "01__meeting_serious_actors_c23.mp4", "01__outside_talking_pan_laughing_actors_c23.mp4", "01__outside_talking_still_laughing_actors_c23.mp4", "01__podium_speech_happy_actors_c23.mp4", "01__secret_conversation_actors_c23.mp4", "01__talking_against_wall_actors_c23.mp4", "01__talking_angry_couch_actors_c23.mp4", "01__walking_and_outside_surprised_actors_c23.mp4", "01__walking_down_indoor_hall_disgust_actors_c23.mp4", "01__walking_down_street_outside_angry_actors_c23.mp4", "01__walking_outside_cafe_disgusted_actors_c23.mp4", "01__walk_down_hall_angry_actors_c23.mp4", "02__exit_phone_room_actors_c23.mp4", "02__hugging_happy_actors_c23.mp4", "02__kitchen_pan_actors_c23.mp4", "02__kitchen_still_actors_c23.mp4", "02__meeting_serious_actors_c23.mp4", "02__outside_talking_pan_laughing_actors_c23.mp4", "02__outside_talking_still_laughing_actors_c23.mp4", "02__podium_speech_happy_actors_c23.mp4", "02__secret_conversation_actors_c23.mp4", "02__talking_against_wall_actors_c23.mp4", "02__talking_angry_couch_actors_c23.mp4", "02__walking_and_outside_surprised_actors_c23.mp4", "02__walking_down_indoor_hall_disgust_actors_c23.mp4", "02__walking_down_street_outside_angry_actors_c23.mp4", "02__walking_outside_cafe_disgusted_actors_c23.mp4", "02__walk_down_hall_angry_actors_c23.mp4", "03__exit_phone_room_actors_c23.mp4", "03__hugging_happy_actors_c23.mp4", "03__kitchen_pan_actors_c23.mp4", "03__kitchen_still_actors_c23.mp4", "03__meeting_serious_actors_c23.mp4", "03__outside_talking_pan_laughing_actors_c23.mp4", "03__outside_talking_still_laughing_actors_c23.mp4", "03__podium_speech_happy_actors_c23.mp4", "03__secret_conversation_actors_c23.mp4", "03__talking_against_wall_actors_c23.mp4", "03__talking_angry_couch_actors_c23.mp4", "03__walking_and_outside_surprised_actors_c23.mp4", "03__walking_down_indoor_hall_disgust_actors_c23.mp4", "03__walking_down_street_outside_angry_actors_c23.mp4", "03__walking_outside_cafe_disgusted_actors_c23.mp4", "03__walk_down_hall_angry_actors_c23.mp4", "04__exit_phone_room_actors_c23.mp4", "04__kitchen_pan_actors_c23.mp4", "04__kitchen_still_actors_c23.mp4", "04__outside_talking_pan_laughing_actors_c23.mp4", "04__outside_talking_still_laughing_actors_c23.mp4", "04__podium_speech_happy_actors_c23.mp4", "04__secret_conversation_actors_c23.mp4", "04__talking_against_wall_actors_c23.mp4", "04__talking_angry_couch_actors_c23.mp4", "04__walking_down_street_outside_angry_actors_c23.mp4", "04__walking_outside_cafe_disgusted_actors_c23.mp4", "04__walk_down_hall_angry_actors_c23.mp4", "05__exit_phone_room_actors_c23.mp4", "05__hugging_happy_actors_c23.mp4", "05__kitchen_pan_actors_c23.mp4", "05__kitchen_still_actors_c23.mp4", "05__outside_talking_pan_laughing_actors_c23.mp4", "05__outside_talking_still_laughing_actors_c23.mp4", "05__podium_speech_happy_actors_c23.mp4", "05__talking_against_wall_actors_c23.mp4", "05__walking_down_street_outside_angry_actors_c23.mp4", "05__walking_outside_cafe_disgusted_actors_c23.mp4", "05__walk_down_hall_angry_actors_c23.mp4", "06__exit_phone_room_actors_c23.mp4", "06__hugging_happy_actors_c23.mp4", "06__kitchen_pan_actors_c23.mp4", "06__kitchen_still_actors_c23.mp4", "06__outside_talking_pan_laughing_actors_c23.mp4", "06__outside_talking_still_laughing_actors_c23.mp4", "06__podium_speech_happy_actors_c23.mp4", "06__talking_against_wall_actors_c23.mp4", "06__talking_angry_couch_actors_c23.mp4", "06__walking_and_outside_surprised_actors_c23.mp4", "06__walking_down_indoor_hall_disgust_actors_c23.mp4", "06__walking_down_street_outside_angry_actors_c23.mp4", "06__walking_outside_cafe_disgusted_actors_c23.mp4", "06__walk_down_hall_angry_actors_c23.mp4", "07__exit_phone_room_actors_c23.mp4", "07__hugging_happy_actors_c23.mp4", "07__kitchen_pan_actors_c23.mp4", "07__kitchen_still_actors_c23.mp4", "07__outside_talking_pan_laughing_actors_c23.mp4", "07__outside_talking_still_laughing_actors_c23.mp4", "07__podium_speech_happy_actors_c23.mp4", "07__secret_conversation_actors_c23.mp4", "07__talking_against_wall_actors_c23.mp4", "07__talking_angry_couch_actors_c23.mp4", "07__walking_down_street_outside_angry_actors_c23.mp4", "07__walking_outside_cafe_disgusted_actors_c23.mp4", "07__walk_down_hall_angry_actors_c23.mp4", "08__exit_phone_room_actors_c23.mp4", "08__kitchen_pan_actors_c23.mp4", "08__kitchen_still_actors_c23.mp4", "08__outside_talking_pan_laughing_actors_c23.mp4", "08__outside_talking_still_laughing_actors_c23.mp4", "08__podium_speech_happy_actors_c23.mp4", "08__talking_against_wall_actors_c23.mp4", "08__walking_down_street_outside_angry_actors_c23.mp4", "08__walking_outside_cafe_disgusted_actors_c23.mp4", "08__walk_down_hall_angry_actors_c23.mp4", "09__exit_phone_room_actors_c23.mp4", "09__kitchen_pan_actors_c23.mp4", "09__outside_talking_pan_laughing_actors_c23.mp4", "09__outside_talking_still_laughing_actors_c23.mp4", "09__podium_speech_happy_actors_c23.mp4", "09__talking_against_wall_actors_c23.mp4", "09__talking_angry_couch_actors_c23.mp4", "09__walking_down_street_outside_angry_actors_c23.mp4", "09__walk_down_hall_angry_actors_c23.mp4", "10__exit_phone_room_actors_c23.mp4", "10__kitchen_pan_actors_c23.mp4", "10__kitchen_still_actors_c23.mp4", "10__outside_talking_pan_laughing_actors_c23.mp4", "10__outside_talking_still_laughing_actors_c23.mp4", "10__podium_speech_happy_actors_c23.mp4", "10__talking_against_wall_actors_c23.mp4", "10__talking_angry_couch_actors_c23.mp4", "10__walking_down_street_outside_angry_actors_c23.mp4", "10__walking_outside_cafe_disgusted_actors_c23.mp4", "10__walk_down_hall_angry_actors_c23.mp4", "11__exit_phone_room_actors_c23.mp4", "11__kitchen_pan_actors_c23.mp4", "11__kitchen_still_actors_c23.mp4", "11__outside_talking_pan_laughing_actors_c23.mp4", "11__outside_talking_still_laughing_actors_c23.mp4", "11__podium_speech_happy_actors_c23.mp4", "11__secret_conversation_actors_c23.mp4", "11__talking_against_wall_actors_c23.mp4", "11__talking_angry_couch_actors_c23.mp4", "11__walking_down_street_outside_angry_actors_c23.mp4", "11__walking_outside_cafe_disgusted_actors_c23.mp4", "11__walk_down_hall_angry_actors_c23.mp4", "12__exit_phone_room_actors_c23.mp4", "12__hugging_happy_actors_c23.mp4", "12__kitchen_pan_actors_c23.mp4", "12__kitchen_still_actors_c23.mp4", "12__outside_talking_pan_laughing_actors_c23.mp4", "12__outside_talking_still_laughing_actors_c23.mp4", "12__podium_speech_happy_actors_c23.mp4", "12__secret_conversation_actors_c23.mp4", "12__talking_against_wall_actors_c23.mp4", "12__talking_angry_couch_actors_c23.mp4", "12__walking_and_outside_surprised_actors_c23.mp4", "12__walking_down_indoor_hall_disgust_actors_c23.mp4", "12__walking_down_street_outside_angry_actors_c23.mp4", "12__walking_outside_cafe_disgusted_actors_c23.mp4", "12__walk_down_hall_angry_actors_c23.mp4", "13__exit_phone_room_actors_c23.mp4", "13__hugging_happy_actors_c23.mp4", "13__kitchen_pan_actors_c23.mp4", "13__kitchen_still_actors_c23.mp4", "13__outside_talking_pan_laughing_actors_c23.mp4", "13__outside_talking_still_laughing_actors_c23.mp4", "13__podium_speech_happy_actors_c23.mp4", "13__secret_conversation_actors_c23.mp4", "13__talking_against_wall_actors_c23.mp4", "13__talking_angry_couch_actors_c23.mp4", "13__walking_and_outside_surprised_actors_c23.mp4", "13__walking_down_indoor_hall_disgust_actors_c23.mp4", "13__walking_down_street_outside_angry_actors_c23.mp4", "13__walking_outside_cafe_disgusted_actors_c23.mp4", "13__walk_down_hall_angry_actors_c23.mp4", "14__exit_phone_room_actors_c23.mp4", "14__hugging_happy_actors_c23.mp4", "14__kitchen_pan_actors_c23.mp4", "14__kitchen_still_actors_c23.mp4", "14__outside_talking_pan_laughing_actors_c23.mp4", "14__outside_talking_still_laughing_actors_c23.mp4", "14__podium_speech_happy_actors_c23.mp4", "14__secret_conversation_actors_c23.mp4", "14__talking_against_wall_actors_c23.mp4", "14__talking_angry_couch_actors_c23.mp4", "14__walking_and_outside_surprised_actors_c23.mp4", "14__walking_down_indoor_hall_disgust_actors_c23.mp4", "14__walking_down_street_outside_angry_actors_c23.mp4", "14__walking_outside_cafe_disgusted_actors_c23.mp4", "14__walk_down_hall_angry_actors_c23.mp4", "15__exit_phone_room_actors_c23.mp4", "15__hugging_happy_actors_c23.mp4", "15__kitchen_pan_actors_c23.mp4", "15__kitchen_still_actors_c23.mp4", "15__outside_talking_pan_laughing_actors_c23.mp4", "15__outside_talking_still_laughing_actors_c23.mp4", "15__podium_speech_happy_actors_c23.mp4", "15__talking_against_wall_actors_c23.mp4", "15__talking_angry_couch_actors_c23.mp4", "15__walking_and_outside_surprised_actors_c23.mp4", "15__walking_down_indoor_hall_disgust_actors_c23.mp4", "15__walking_down_street_outside_angry_actors_c23.mp4", "15__walking_outside_cafe_disgusted_actors_c23.mp4", "15__walk_down_hall_angry_actors_c23.mp4", "16__exit_phone_room_actors_c23.mp4", "16__hugging_happy_actors_c23.mp4", "16__kitchen_pan_actors_c23.mp4", "16__kitchen_still_actors_c23.mp4", "16__outside_talking_pan_laughing_actors_c23.mp4"], "pred": [0.9943609237670898, 0.5921189188957214, 0.9335203766822815, 0.8039353489875793, 0.984056830406189, 0.9989997148513794, 0.9568749666213989, 0.7357391715049744, 0.982063889503479, 0.9657002091407776, 0.9737181067466736, 0.998354971408844, 0.8942556977272034, 0.9976786375045776, 0.9656146168708801, 0.8390328288078308, 0.8169578909873962, 0.9961206316947937, 0.8363555073738098, 0.9040819406509399, 0.8560516834259033, 0.8990632891654968, 0.7919091582298279, 0.9597905278205872, 0.705342710018158, 0.9673974514007568, 0.8815049529075623, 0.9812279343605042, 0.6289432048797607, 0.9831722974777222, 0.9535337686538696, 0.9577608108520508, 0.8025110960006714, 0.9897889494895935, 0.9193478226661682, 0.6808089017868042, 0.3939366340637207, 0.945522665977478, 0.9370115995407104, 0.9461434483528137, 0.9806830883026123, 0.9856723546981812, 0.6479164958000183, 0.6015295386314392, 0.7966610193252563, 0.8185258507728577, 0.9298452734947205, 0.9103887677192688, 0.9768124222755432, 0.9400331974029541, 0.9994767308235168, 0.9302098155021667, 0.9939788579940796, 0.938230574131012, 0.9930195212364197, 0.9950811266899109, 0.9946146011352539, 0.9132095575332642, 0.9988301992416382, 0.955040693283081, 0.9989851713180542, 0.9996030926704407, 0.8612854480743408, 0.9983441829681396, 0.9994216561317444, 0.7576549053192139, 0.5426172614097595, 0.9984403848648071, 0.9481873512268066, 0.9778437614440918, 0.9705941677093506, 0.9725875854492188, 0.9429699182510376, 0.9981470704078674, 0.8299161195755005, 0.9965057969093323, 0.9453507661819458, 0.7888616323471069, 0.9623425006866455, 0.9929193258285522, 0.9059736132621765, 0.9929598569869995, 0.9723411798477173, 0.9951927065849304, 0.9678564071655273, 0.6707952618598938, 0.9845043420791626, 0.8113741278648376, 0.9950497150421143, 0.8872966170310974, 0.9529008269309998, 0.9912424683570862, 0.8893976807594299, 0.9700141549110413, 0.5537957549095154, 0.9380443692207336, 0.8261258602142334, 0.9266881346702576, 0.9974356889724731, 0.9989307522773743, 0.9988292455673218, 0.999776303768158, 0.9971598982810974, 0.9997763633728027, 0.937477707862854, 0.9997556209564209, 0.954366147518158, 0.9990226030349731, 0.9940057992935181, 0.9722423553466797, 0.9781336188316345, 0.9795548915863037, 0.9422211647033691, 0.9991476535797119, 0.999494731426239, 0.9997459650039673, 0.9979143738746643, 0.9866925477981567, 0.9999150633811951, 0.9782446026802063, 0.9998287558555603, 0.9999569654464722, 0.998254656791687, 0.9992339611053467, 0.9942104816436768, 0.9998461008071899, 0.9998152256011963, 0.9996094703674316, 0.9998514652252197, 0.9866496324539185, 0.9985568523406982, 0.9996292591094971, 0.9892376661300659, 0.9525488018989563, 0.9997690916061401, 0.9993038177490234, 0.9991632103919983, 0.9996105432510376, 0.5984604358673096, 0.9986860156059265, 0.9994487762451172, 0.9982313513755798, 0.8036597967147827, 0.9518953561782837, 0.9968377351760864, 0.9548873901367188, 0.9983587265014648, 0.666999876499176, 0.8815102577209473, 0.9343752861022949, 0.9884647727012634, 0.9744327664375305, 0.981774628162384, 0.9996699690818787, 0.9765924215316772, 0.9926505088806152, 0.7797335982322693, 0.9438348412513733, 0.994994580745697, 0.9640167355537415, 0.9914782047271729, 0.8722764253616333, 0.7266359329223633, 0.9230562448501587, 0.9966104626655579, 0.9719846844673157, 0.9671654105186462, 0.966516375541687, 0.9951052069664001, 0.9754520058631897, 0.9918431639671326, 0.9856405258178711, 0.9823632836341858, 0.9647096395492554, 0.9712957739830017, 0.9949309825897217, 0.9990411996841431, 0.9632108807563782, 0.9272968769073486, 0.6246618032455444, 0.9800553917884827, 0.5735284090042114, 0.7326717376708984, 0.4190341830253601, 0.9375623464584351, 0.8328757286071777, 0.9953901767730713, 0.8536649346351624, 0.14948028326034546, 0.7484521865844727, 0.9205170273780823, 0.8048402667045593, 0.5400291681289673, 0.9453384876251221, 0.865383505821228, 0.706731379032135, 0.911914050579071, 0.71852707862854, 0.5465624332427979, 0.5247630476951599, 0.9030174612998962, 0.8293036222457886, 0.6683678030967712, 0.07950437068939209, 0.21818625926971436, 0.050279438495635986, 0.005856990814208984, 0.22479963302612305, 0.3318389654159546, 0.1415550708770752, 0.023397982120513916, 0.07615715265274048, 0.0025010108947753906, 0.06619232892990112, 0.4532749652862549, 0.4982439875602722, 0.138874351978302, 0.16926389932632446, 0.1647183895111084, 0.1662311553955078, 0.1883794069290161, 0.13704556226730347, 0.043771445751190186, 0.3851645588874817, 0.1522933840751648, 0.06353557109832764, 0.14250028133392334, 0.13533353805541992, 0.003689408302307129, 0.022334158420562744, 0.4526470899581909, 0.4264645576477051, 0.18880122900009155, 0.13261842727661133, 0.21020734310150146, 0.17731523513793945, 0.017346560955047607, 0.0021255016326904297, 0.11735963821411133, 0.11683285236358643, 0.04380983114242554, 0.0400506854057312, 0.019602060317993164, 0.25878220796585083, 0.002970099449157715, 0.008260667324066162, 0.3882771134376526, 0.514937162399292, 0.2015392780303955, 0.09944283962249756, 0.12256741523742676, 0.07417047023773193, 0.020689010620117188, 0.1396515965461731, 0.06269341707229614, 0.015414297580718994, 0.023624897003173828, 0.13099610805511475, 0.0021340250968933105, 0.048123955726623535, 0.06486111879348755, 0.1076500415802002, 0.10185843706130981, 0.02676403522491455, 0.008487105369567871, 0.005716919898986816, 0.009746372699737549, 0.014046669006347656, 0.007323503494262695, 0.03222334384918213, 0.02969491481781006, 0.04620927572250366, 0.10015010833740234, 0.09594941139221191, 0.0703919529914856, 0.030676662921905518, 0.023229897022247314, 0.03296858072280884, 0.062461018562316895, 0.06494081020355225, 0.17812645435333252, 0.007824897766113281, 0.09266364574432373, 0.42231011390686035, 0.46105724573135376, 0.12996166944503784, 0.10501962900161743, 0.1308308243751526, 0.08760344982147217, 0.10546731948852539, 0.08782941102981567, 0.04224109649658203, 0.07955116033554077, 0.134884774684906, 0.18957394361495972, 0.3988879919052124, 0.013678967952728271, 0.09145617485046387, 0.15998834371566772, 0.25810593366622925, 0.13420510292053223, 0.1384197473526001, 0.013064205646514893, 0.061266958713531494, 0.0027331113815307617, 0.025754332542419434, 0.07045012712478638, 0.01301109790802002, 0.10447925329208374, 0.05465531349182129, 0.24938207864761353, 0.045589327812194824, 0.012356579303741455, 0.08013570308685303, 0.02746981382369995, 0.017060518264770508, 0.009088695049285889, 0.001343846321105957, 0.012781023979187012, 0.10933083295822144, 0.06636595726013184, 0.040084898471832275, 0.05021333694458008, 0.20010018348693848, 0.09923034906387329, 0.10645675659179688, 0.0166204571723938, 0.03958386182785034, 0.06383359432220459, 0.09405416250228882, 0.14029580354690552, 0.05792039632797241, 0.013698816299438477, 0.01322239637374878, 0.10210061073303223, 0.14902186393737793, 0.04726320505142212, 0.12868493795394897, 0.01848071813583374, 0.010843336582183838, 0.048589229583740234, 0.06165468692779541, 0.01431262493133545, 0.04563504457473755, 0.15860849618911743, 0.023232698440551758, 0.016608476638793945, 0.0411260724067688, 0.02153635025024414, 0.06194251775741577, 0.16120803356170654, 0.08199375867843628, 0.002141237258911133, 0.644788920879364, 0.662222683429718, 0.058695435523986816, 0.009723544120788574, 0.061341702938079834, 0.046251893043518066, 0.14684975147247314, 0.08680981397628784, 0.05763643980026245, 0.08916568756103516, 0.06609630584716797, 0.03749287128448486, 0.003136157989501953, 0.08848822116851807, 0.012343645095825195, 0.6459218263626099, 0.6620135307312012, 0.044684648513793945, 0.0382729172706604, 0.10952925682067871, 0.23823243379592896, 0.1728765368461609, 0.05990922451019287, 0.04130619764328003, 0.011523723602294922, 0.06104910373687744, 0.32677167654037476, 0.04150199890136719, 0.010961532592773438, 0.2169056534767151, 0.5135046243667603, 0.7178708910942078, 0.11383378505706787, 0.0511699914932251, 0.17837846279144287, 0.1010814905166626, 0.09880167245864868, 0.037601351737976074, 0.10187333822250366, 0.10135406255722046, 0.04943877458572388, 0.286909282207489, 0.1085439920425415, 0.2165292501449585, 0.5518009066581726, 0.6852800250053406, 0.21552562713623047, 0.07747340202331543, 0.184423565864563, 0.040261149406433105, 0.11740881204605103, 0.12248975038528442, 0.049288392066955566, 0.24701541662216187], "klass": ["neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "neuraltextures", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "face2face", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "deepfakes", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original", "original"], "pred_label": ["FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL"], "correct_label": ["FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "FAKE", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL", "REAL"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_07_2025_22_14_13.json b/result/prediction_other_genconvit_March_07_2025_22_14_13.json
new file mode 100644
index 0000000000000000000000000000000000000000..05235bcfd0a0b78407b13c779a634273b1c0aa70
--- /dev/null
+++ b/result/prediction_other_genconvit_March_07_2025_22_14_13.json
@@ -0,0 +1 @@
+{"video": {"name": ["0045.mp4.mp4"], "pred": [0.5602145195007324], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_07_2025_23_28_59.json b/result/prediction_other_genconvit_March_07_2025_23_28_59.json
new file mode 100644
index 0000000000000000000000000000000000000000..468560280ea5f32d6500f95519a22c087e4920ef
--- /dev/null
+++ b/result/prediction_other_genconvit_March_07_2025_23_28_59.json
@@ -0,0 +1 @@
+{"video": {"name": ["0017_fake.mp4.mp4"], "pred": [0.9963172674179077], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_07_2025_23_33_10.json b/result/prediction_other_genconvit_March_07_2025_23_33_10.json
new file mode 100644
index 0000000000000000000000000000000000000000..e77c2cc00fb5977b059ec38e604e15e4f4cf638a
--- /dev/null
+++ b/result/prediction_other_genconvit_March_07_2025_23_33_10.json
@@ -0,0 +1 @@
+{"video": {"name": ["0017_fake.mp4.mp4"], "pred": [0.9963205456733704], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_07_2025_23_37_00.json b/result/prediction_other_genconvit_March_07_2025_23_37_00.json
new file mode 100644
index 0000000000000000000000000000000000000000..821fc1d64dca8619979f2d6bf6bafb63c21ff240
--- /dev/null
+++ b/result/prediction_other_genconvit_March_07_2025_23_37_00.json
@@ -0,0 +1 @@
+{"video": {"name": ["0017_fake.mp4.mp4"], "pred": [0.9963181614875793], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_07_2025_23_55_27.json b/result/prediction_other_genconvit_March_07_2025_23_55_27.json
new file mode 100644
index 0000000000000000000000000000000000000000..7396e19f5b36d9c3592fdae1b22eb646512e2cce
--- /dev/null
+++ b/result/prediction_other_genconvit_March_07_2025_23_55_27.json
@@ -0,0 +1 @@
+{"video": {"name": ["sample_1.mp4"], "pred": [0.9996999502182007], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_07_2025_23_59_40.json b/result/prediction_other_genconvit_March_07_2025_23_59_40.json
new file mode 100644
index 0000000000000000000000000000000000000000..0ec13d0851d0332b7bcfc47d27794e4cce2e2672
--- /dev/null
+++ b/result/prediction_other_genconvit_March_07_2025_23_59_40.json
@@ -0,0 +1 @@
+{"video": {"name": ["sample_1.mp4"], "pred": [0.9997004270553589], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_08_2025_00_03_44.json b/result/prediction_other_genconvit_March_08_2025_00_03_44.json
new file mode 100644
index 0000000000000000000000000000000000000000..29357339e762491a038493d9b5ae75d3136a20f4
--- /dev/null
+++ b/result/prediction_other_genconvit_March_08_2025_00_03_44.json
@@ -0,0 +1 @@
+{"video": {"name": ["sample_1.mp4"], "pred": [0.9997005462646484], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_08_2025_00_10_00.json b/result/prediction_other_genconvit_March_08_2025_00_10_00.json
new file mode 100644
index 0000000000000000000000000000000000000000..6c09bab3b7b37c6d04ea6c7682db7bde4857a55d
--- /dev/null
+++ b/result/prediction_other_genconvit_March_08_2025_00_10_00.json
@@ -0,0 +1 @@
+{"video": {"name": ["sample_1.mp4"], "pred": [0.999701976776123], "klass": ["uncategorized"], "pred_label": ["FAKE"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_08_2025_00_18_09.json b/result/prediction_other_genconvit_March_08_2025_00_18_09.json
new file mode 100644
index 0000000000000000000000000000000000000000..88e0bb2261e48c4f0996acf12cd45db1caf39252
--- /dev/null
+++ b/result/prediction_other_genconvit_March_08_2025_00_18_09.json
@@ -0,0 +1 @@
+{"video": {"name": ["anndvqgoko.mp4"], "pred": [0.05888557434082031], "klass": ["uncategorized"], "pred_label": ["REAL"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_08_2025_00_21_11.json b/result/prediction_other_genconvit_March_08_2025_00_21_11.json
new file mode 100644
index 0000000000000000000000000000000000000000..e3684f60512ac59a6d8969876f6673163c96f460
--- /dev/null
+++ b/result/prediction_other_genconvit_March_08_2025_00_21_11.json
@@ -0,0 +1 @@
+{"video": {"name": ["anndvqgoko.mp4"], "pred": [0.05888569355010986], "klass": ["uncategorized"], "pred_label": ["REAL"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result/prediction_other_genconvit_March_08_2025_01_18_40.json b/result/prediction_other_genconvit_March_08_2025_01_18_40.json
new file mode 100644
index 0000000000000000000000000000000000000000..03b50b299cac77cc3e489c15e82f1023d7dd58e7
--- /dev/null
+++ b/result/prediction_other_genconvit_March_08_2025_01_18_40.json
@@ -0,0 +1 @@
+{"video": {"name": ["anndvqgoko.mp4"], "pred": [0.058885395526885986], "klass": ["uncategorized"], "pred_label": ["REAL"], "correct_label": ["unknown"]}}
\ No newline at end of file
diff --git a/result_all.py b/result_all.py
new file mode 100644
index 0000000000000000000000000000000000000000..c02efe34c9549a622953e700a0c94c377671162b
--- /dev/null
+++ b/result_all.py
@@ -0,0 +1,75 @@
+import os
+import json
+import matplotlib.pyplot as plt
+from sklearn.metrics import roc_curve, roc_auc_score, f1_score
+
+json_files = [
+ os.path.join("result", "data_april14_Celeb-DF.json"),
+ os.path.join("result", "data_april14_DFDC.json"),
+ os.path.join("result", "data_april11_DeepfakeTIMIT.json"),
+ os.path.join("result", "data_april14_FF++.json"),
+]
+
+# Lists to store the ROC curve data
+fpr_list = []
+tpr_list = []
+roc_auc_list = []
+
+for json_file in json_files:
+ with open(json_file, "r") as f:
+ result = json.load(f)
+
+ # Get the actual labels and predicted probabilities or predicted labels from the result dictionary
+ actual_labels = result["video"]["correct_label"]
+ predicted_probs = result["video"]["pred"]
+ predicted_labels = result["video"]["pred_label"]
+
+ big_pp = [1 if P >= 0.5 else 0 for P in predicted_probs]
+ p_labels = [1 if label == "FAKE" else 0 for label in predicted_labels]
+ a_labels = [1 if label == "FAKE" else 0 for label in actual_labels]
+
+ # Calculate ROC curve and AUC
+ fpr, tpr, thresholds = roc_curve(a_labels, predicted_probs)
+ roc_auc = roc_auc_score(a_labels, predicted_probs)
+ f1 = f1_score(a_labels, big_pp)
+
+ # Append the data to the lists
+ fpr_list.append(fpr)
+ tpr_list.append(tpr)
+ roc_auc_list.append(roc_auc)
+
+ a = 0
+ for i in range(len(p_labels)):
+ if p_labels[i] == a_labels[i]:
+ a += 1
+
+ accuracy = sum(x == y for x, y in zip(p_labels, a_labels)) / len(p_labels)
+ real_acc = sum(
+ (x == y and y == 0) for x, y in zip(p_labels, a_labels)
+ ) / a_labels.count(0)
+ fake_acc = sum(
+ (x == y and y == 1) for x, y in zip(p_labels, a_labels)
+ ) / a_labels.count(1)
+ print(
+ f"{(json_file[:-5].split('_')[-1])}:\nReal accuracy {real_acc*100:.3f} Fake accuracy {fake_acc*100:.3f}, Accuracy: {accuracy*100:.3f}"
+ )
+ print(f"ROC AUC: {roc_auc:.3f}")
+ print(f"F1 Score: {f1:.3f}\n")
+
+# Plot ROC curves
+plt.figure()
+for i in range(len(json_files)):
+ plt.plot(
+ fpr_list[i],
+ tpr_list[i],
+ label=f"{json_files[i][:-5].split('_')[-1]} (area = %0.3f)" % roc_auc_list[i],
+ )
+
+plt.plot([0, 1], [0, 1], "k--")
+plt.xlim([0.0, 1.0])
+plt.ylim([0.0, 1.05])
+plt.xlabel("False Positive Rate")
+plt.ylabel("True Positive Rate")
+plt.title("Receiver Operating Characteristic (ROC) Curve")
+plt.legend(loc="lower right")
+plt.show()
diff --git a/sample_train_data/test/fake/aavqiqgbzl_mjqktsbgyj_0.jpg b/sample_train_data/test/fake/aavqiqgbzl_mjqktsbgyj_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..613683831b72500babe43c48e5955bacde0695f7
Binary files /dev/null and b/sample_train_data/test/fake/aavqiqgbzl_mjqktsbgyj_0.jpg differ
diff --git a/sample_train_data/test/fake/aavqiqgbzl_mjqktsbgyj_1.jpg b/sample_train_data/test/fake/aavqiqgbzl_mjqktsbgyj_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7b98c3307fdfc2184b836348128c6ca71e458a89
Binary files /dev/null and b/sample_train_data/test/fake/aavqiqgbzl_mjqktsbgyj_1.jpg differ
diff --git a/sample_train_data/test/fake/aawhvztjdt_rchhpxquai_1.jpg b/sample_train_data/test/fake/aawhvztjdt_rchhpxquai_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..57ae86ed214eab90b750138dc3622001f333ffdc
Binary files /dev/null and b/sample_train_data/test/fake/aawhvztjdt_rchhpxquai_1.jpg differ
diff --git a/sample_train_data/test/fake/aawwkinixp_qgfztfdjeo_0.jpg b/sample_train_data/test/fake/aawwkinixp_qgfztfdjeo_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..626d73dce5de0fb2e9ab7ec7991190939f7aa943
Binary files /dev/null and b/sample_train_data/test/fake/aawwkinixp_qgfztfdjeo_0.jpg differ
diff --git a/sample_train_data/test/fake/ablakozzyi_qtocjfadqh_0.jpg b/sample_train_data/test/fake/ablakozzyi_qtocjfadqh_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2ca90013b9ca3e46dedf0eccf8797a2d28e39c44
Binary files /dev/null and b/sample_train_data/test/fake/ablakozzyi_qtocjfadqh_0.jpg differ
diff --git a/sample_train_data/test/fake/abssilrpat_spyazeqqds_8.jpg b/sample_train_data/test/fake/abssilrpat_spyazeqqds_8.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a3b2eb327cfdae52d57cdc075c18b4bdfa632fea
Binary files /dev/null and b/sample_train_data/test/fake/abssilrpat_spyazeqqds_8.jpg differ
diff --git a/sample_train_data/test/fake/abszlbwsaz_nseapxuzsx_1.jpg b/sample_train_data/test/fake/abszlbwsaz_nseapxuzsx_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..66d510d2bd3e5ac84022f34bb1e4c3ecbaf7fbfd
Binary files /dev/null and b/sample_train_data/test/fake/abszlbwsaz_nseapxuzsx_1.jpg differ
diff --git a/sample_train_data/test/fake/abszlbwsaz_nseapxuzsx_2.jpg b/sample_train_data/test/fake/abszlbwsaz_nseapxuzsx_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0e9492d82a559ac6c8424e132e19267e1c7b924f
Binary files /dev/null and b/sample_train_data/test/fake/abszlbwsaz_nseapxuzsx_2.jpg differ
diff --git a/sample_train_data/test/fake/acxnxvbsxk_fjlyaizcwc_0.jpg b/sample_train_data/test/fake/acxnxvbsxk_fjlyaizcwc_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2c2175384d7322159a66edb62738983a40c7f14b
Binary files /dev/null and b/sample_train_data/test/fake/acxnxvbsxk_fjlyaizcwc_0.jpg differ
diff --git a/sample_train_data/test/fake/adtvlinjvb_kxvowszzuo_2.jpg b/sample_train_data/test/fake/adtvlinjvb_kxvowszzuo_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..789a1698380c189f6b47196627b61b22b882cbc7
Binary files /dev/null and b/sample_train_data/test/fake/adtvlinjvb_kxvowszzuo_2.jpg differ
diff --git a/sample_train_data/test/fake/aetbhpddib_rnckeghtyz_5.jpg b/sample_train_data/test/fake/aetbhpddib_rnckeghtyz_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fecbe8f2597a9e3f35a8ba77ae5d09c2766a7d2b
Binary files /dev/null and b/sample_train_data/test/fake/aetbhpddib_rnckeghtyz_5.jpg differ
diff --git a/sample_train_data/test/fake/aghlanmigg_stybihvfba_6.jpg b/sample_train_data/test/fake/aghlanmigg_stybihvfba_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a280b871b4d892588bb40457c7b2db3153836e25
Binary files /dev/null and b/sample_train_data/test/fake/aghlanmigg_stybihvfba_6.jpg differ
diff --git a/sample_train_data/test/fake/ahxmjmqsgx_fxmtkvitfw_1.jpg b/sample_train_data/test/fake/ahxmjmqsgx_fxmtkvitfw_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..35106c9ab6d591576fc86369a324524502cc74a0
Binary files /dev/null and b/sample_train_data/test/fake/ahxmjmqsgx_fxmtkvitfw_1.jpg differ
diff --git a/sample_train_data/test/fake/akndzxxbai_ryfqnbcpmt_6.jpg b/sample_train_data/test/fake/akndzxxbai_ryfqnbcpmt_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d0ad4f567b45c078ceeafdb5bbf15a22ba604838
Binary files /dev/null and b/sample_train_data/test/fake/akndzxxbai_ryfqnbcpmt_6.jpg differ
diff --git a/sample_train_data/test/fake/ambfrhxhxr_wszvhoeuyz_6.jpg b/sample_train_data/test/fake/ambfrhxhxr_wszvhoeuyz_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3fce13ca75886644c6e096a06b700b777967db43
Binary files /dev/null and b/sample_train_data/test/fake/ambfrhxhxr_wszvhoeuyz_6.jpg differ
diff --git a/sample_train_data/test/fake/ambzbconcm_wihxahqfwx_0.jpg b/sample_train_data/test/fake/ambzbconcm_wihxahqfwx_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..85e2df143dfb4ac5bd8f95efe93b6aec4e7f0791
Binary files /dev/null and b/sample_train_data/test/fake/ambzbconcm_wihxahqfwx_0.jpg differ
diff --git a/sample_train_data/test/fake/ambzbconcm_wihxahqfwx_1.jpg b/sample_train_data/test/fake/ambzbconcm_wihxahqfwx_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..edb922264c73217b1d71a5394516e19460d701a1
Binary files /dev/null and b/sample_train_data/test/fake/ambzbconcm_wihxahqfwx_1.jpg differ
diff --git a/sample_train_data/test/fake/andtikykcc_cfaqbobudg_0.jpg b/sample_train_data/test/fake/andtikykcc_cfaqbobudg_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..34877dce738c2fefb26f5dbbb2e32821be78a195
Binary files /dev/null and b/sample_train_data/test/fake/andtikykcc_cfaqbobudg_0.jpg differ
diff --git a/sample_train_data/test/fake/anoehnostw_tpztvhiiyt_2.jpg b/sample_train_data/test/fake/anoehnostw_tpztvhiiyt_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..45c2bce3e84a00be0a0fc0c4f087c5d8b070c331
Binary files /dev/null and b/sample_train_data/test/fake/anoehnostw_tpztvhiiyt_2.jpg differ
diff --git a/sample_train_data/test/fake/aokhvkoynm_qflpehfxtp_0.jpg b/sample_train_data/test/fake/aokhvkoynm_qflpehfxtp_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3dc9868695f9ba54e5671a109af8767d7d9a7413
Binary files /dev/null and b/sample_train_data/test/fake/aokhvkoynm_qflpehfxtp_0.jpg differ
diff --git a/sample_train_data/test/fake/apjktzsawg_kfqoigflcg_6.jpg b/sample_train_data/test/fake/apjktzsawg_kfqoigflcg_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..aad6eed48c821642e5b70871248bb55eb22b2815
Binary files /dev/null and b/sample_train_data/test/fake/apjktzsawg_kfqoigflcg_6.jpg differ
diff --git a/sample_train_data/test/fake/aprtfacuwr_rjxtsiycme_7.jpg b/sample_train_data/test/fake/aprtfacuwr_rjxtsiycme_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..28aebfd4b5e6048bf128e511111a8d982b462501
Binary files /dev/null and b/sample_train_data/test/fake/aprtfacuwr_rjxtsiycme_7.jpg differ
diff --git a/sample_train_data/test/fake/aqcmtcybpq_veecjbgkph_1.jpg b/sample_train_data/test/fake/aqcmtcybpq_veecjbgkph_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fcaca6c82c512fa9d3352117af91711ed267a960
Binary files /dev/null and b/sample_train_data/test/fake/aqcmtcybpq_veecjbgkph_1.jpg differ
diff --git a/sample_train_data/test/fake/arbtkzqayi_iydyvuvtuy_5.jpg b/sample_train_data/test/fake/arbtkzqayi_iydyvuvtuy_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..047796091af66c509fc8e4b44e89b3b9affefa63
Binary files /dev/null and b/sample_train_data/test/fake/arbtkzqayi_iydyvuvtuy_5.jpg differ
diff --git a/sample_train_data/test/fake/ascqxdkrgh_kxqvmerjaa_6.jpg b/sample_train_data/test/fake/ascqxdkrgh_kxqvmerjaa_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3eafb556e8c25b7d37e21442477243665a0ea52b
Binary files /dev/null and b/sample_train_data/test/fake/ascqxdkrgh_kxqvmerjaa_6.jpg differ
diff --git a/sample_train_data/test/fake/atosiqqljt_nkmbyjikgt_3.jpg b/sample_train_data/test/fake/atosiqqljt_nkmbyjikgt_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..92a3abf2f1bb3647ef2259a7298222fcae95521a
Binary files /dev/null and b/sample_train_data/test/fake/atosiqqljt_nkmbyjikgt_3.jpg differ
diff --git a/sample_train_data/test/fake/avjlhxlhbi_wwftgfyzln_0.jpg b/sample_train_data/test/fake/avjlhxlhbi_wwftgfyzln_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a7d0efc75c88de41ae9af20f4bc2cdf56eec65cf
Binary files /dev/null and b/sample_train_data/test/fake/avjlhxlhbi_wwftgfyzln_0.jpg differ
diff --git a/sample_train_data/test/fake/awfdmxsbnj_neqaqslbon_9.jpg b/sample_train_data/test/fake/awfdmxsbnj_neqaqslbon_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..144c5c9d3eedfd9b5a809abbfeefc893bfed4010
Binary files /dev/null and b/sample_train_data/test/fake/awfdmxsbnj_neqaqslbon_9.jpg differ
diff --git a/sample_train_data/test/real/aaragvjucp_1.jpg b/sample_train_data/test/real/aaragvjucp_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e143be17263696ce5ef45a854da28a2253f583c8
Binary files /dev/null and b/sample_train_data/test/real/aaragvjucp_1.jpg differ
diff --git a/sample_train_data/test/real/abpwapkxel_0.jpg b/sample_train_data/test/real/abpwapkxel_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3346796db59176451bcbf36f2ac5893af0849d44
Binary files /dev/null and b/sample_train_data/test/real/abpwapkxel_0.jpg differ
diff --git a/sample_train_data/test/real/acguxjvmju_6.jpg b/sample_train_data/test/real/acguxjvmju_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2f6450448fa2fe427b968e4f2f46097725c8ed3b
Binary files /dev/null and b/sample_train_data/test/real/acguxjvmju_6.jpg differ
diff --git a/sample_train_data/test/real/acgzblwsgw_4.jpg b/sample_train_data/test/real/acgzblwsgw_4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..58ad33e5cc076bf87fbfbbfd718acc768ac71479
Binary files /dev/null and b/sample_train_data/test/real/acgzblwsgw_4.jpg differ
diff --git a/sample_train_data/test/real/acmhexsysx_6.jpg b/sample_train_data/test/real/acmhexsysx_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a41faeda70efdb091a3335a398fc3dcbad495089
Binary files /dev/null and b/sample_train_data/test/real/acmhexsysx_6.jpg differ
diff --git a/sample_train_data/test/real/acscknxbjl_1.jpg b/sample_train_data/test/real/acscknxbjl_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9d797b8b52e2e0b08e35d42b7ddcccaa12b4a8e9
Binary files /dev/null and b/sample_train_data/test/real/acscknxbjl_1.jpg differ
diff --git a/sample_train_data/test/real/adciglvoob_5.jpg b/sample_train_data/test/real/adciglvoob_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0e88c40eef769423ead54dbf68d9170424086550
Binary files /dev/null and b/sample_train_data/test/real/adciglvoob_5.jpg differ
diff --git a/sample_train_data/test/real/adqftoxbjl_6.jpg b/sample_train_data/test/real/adqftoxbjl_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4a28f92120a772788708ab3d3805ea53afd1bdd0
Binary files /dev/null and b/sample_train_data/test/real/adqftoxbjl_6.jpg differ
diff --git a/sample_train_data/test/real/aeykoomsoa_0.jpg b/sample_train_data/test/real/aeykoomsoa_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5a43949b12c48e15b47f9f0685918186fe142a5f
Binary files /dev/null and b/sample_train_data/test/real/aeykoomsoa_0.jpg differ
diff --git a/sample_train_data/test/real/affyecftqy_3.jpg b/sample_train_data/test/real/affyecftqy_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..18c6422d6b99b204e908388bfa73e7146c9a3f50
Binary files /dev/null and b/sample_train_data/test/real/affyecftqy_3.jpg differ
diff --git a/sample_train_data/test/real/afmhdngiib_6.jpg b/sample_train_data/test/real/afmhdngiib_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..aec92f4ac1d8dc999bdd0be15d165e5678965a0d
Binary files /dev/null and b/sample_train_data/test/real/afmhdngiib_6.jpg differ
diff --git a/sample_train_data/test/real/afzglsuwio_7.jpg b/sample_train_data/test/real/afzglsuwio_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..342a9d6d774e9a18d78b57533f87613017642870
Binary files /dev/null and b/sample_train_data/test/real/afzglsuwio_7.jpg differ
diff --git a/sample_train_data/test/real/agmurwijnw_7.jpg b/sample_train_data/test/real/agmurwijnw_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..20605aef23cb324a34894223c646a7b97aecd61c
Binary files /dev/null and b/sample_train_data/test/real/agmurwijnw_7.jpg differ
diff --git a/sample_train_data/test/real/ahmtarbkeg_3.jpg b/sample_train_data/test/real/ahmtarbkeg_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fe3ec2125af5dae5aa9f466bcee5f91f1222ae18
Binary files /dev/null and b/sample_train_data/test/real/ahmtarbkeg_3.jpg differ
diff --git a/sample_train_data/test/real/aitfcfdpjs_7.jpg b/sample_train_data/test/real/aitfcfdpjs_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e87535cdb56002b54521b4eb7a6b2d4c685a411c
Binary files /dev/null and b/sample_train_data/test/real/aitfcfdpjs_7.jpg differ
diff --git a/sample_train_data/test/real/akcxufnmsr_9.jpg b/sample_train_data/test/real/akcxufnmsr_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..cd2405e69b13de806891d1e28f2c43ef00af44cf
Binary files /dev/null and b/sample_train_data/test/real/akcxufnmsr_9.jpg differ
diff --git a/sample_train_data/test/real/aldtqwchhe_0.jpg b/sample_train_data/test/real/aldtqwchhe_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..af3db02fbefcc34406dc5c61bc4a99b3cf8c015a
Binary files /dev/null and b/sample_train_data/test/real/aldtqwchhe_0.jpg differ
diff --git a/sample_train_data/test/real/amnzjdtmtg_0.jpg b/sample_train_data/test/real/amnzjdtmtg_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d5fe68ed80a77fb48a0acdeea4b6d8104a35ab88
Binary files /dev/null and b/sample_train_data/test/real/amnzjdtmtg_0.jpg differ
diff --git a/sample_train_data/test/real/aodczfleto_3.jpg b/sample_train_data/test/real/aodczfleto_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e758e6120a4fb557dd542a71af20407452710272
Binary files /dev/null and b/sample_train_data/test/real/aodczfleto_3.jpg differ
diff --git a/sample_train_data/test/real/apjycnnpfi_9.jpg b/sample_train_data/test/real/apjycnnpfi_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..521c77e92f0a337c879b82b150ef0b6f6d8f8bb0
Binary files /dev/null and b/sample_train_data/test/real/apjycnnpfi_9.jpg differ
diff --git a/sample_train_data/test/real/aretpmdutp_4.jpg b/sample_train_data/test/real/aretpmdutp_4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9aed10d842307035c1446570b469291219da30dc
Binary files /dev/null and b/sample_train_data/test/real/aretpmdutp_4.jpg differ
diff --git a/sample_train_data/test/real/asjeirtlwd_5.jpg b/sample_train_data/test/real/asjeirtlwd_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e558c177ce60a57c21adcf8b3af3ca582c50431b
Binary files /dev/null and b/sample_train_data/test/real/asjeirtlwd_5.jpg differ
diff --git a/sample_train_data/test/real/atwqjgynix_7.jpg b/sample_train_data/test/real/atwqjgynix_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3b473aa14735e66ed30faf9cd95678656c5d62ec
Binary files /dev/null and b/sample_train_data/test/real/atwqjgynix_7.jpg differ
diff --git a/sample_train_data/test/real/axrjmjewtw_9.jpg b/sample_train_data/test/real/axrjmjewtw_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..90dc041adb74d20c68fac7f4e54e36d1e55906d2
Binary files /dev/null and b/sample_train_data/test/real/axrjmjewtw_9.jpg differ
diff --git a/sample_train_data/test/real/azvuadmhnf_7.jpg b/sample_train_data/test/real/azvuadmhnf_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d6cbae2ed6169f9ff49e55c3ae02ac0d7a43c169
Binary files /dev/null and b/sample_train_data/test/real/azvuadmhnf_7.jpg differ
diff --git a/sample_train_data/test/real/fknauejbfh_5.jpg b/sample_train_data/test/real/fknauejbfh_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7f960cce7a0d97c66556ff8be35059a6c30d5354
Binary files /dev/null and b/sample_train_data/test/real/fknauejbfh_5.jpg differ
diff --git a/sample_train_data/test/real/fqygsfvmhu_2.jpg b/sample_train_data/test/real/fqygsfvmhu_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6fe7e1e311990e8f1592e319ba7d680d393476ff
Binary files /dev/null and b/sample_train_data/test/real/fqygsfvmhu_2.jpg differ
diff --git a/sample_train_data/test/real/gabriqswhu_5.jpg b/sample_train_data/test/real/gabriqswhu_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..82fa1f1d7859d687a5991d40897c7093823237bd
Binary files /dev/null and b/sample_train_data/test/real/gabriqswhu_5.jpg differ
diff --git a/sample_train_data/train/fake/aacwokkodz_wpetoxysqs_4.jpg b/sample_train_data/train/fake/aacwokkodz_wpetoxysqs_4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ccd2bd9f690e64f2fb9acbf8a3978ca5bb08df2a
Binary files /dev/null and b/sample_train_data/train/fake/aacwokkodz_wpetoxysqs_4.jpg differ
diff --git a/sample_train_data/train/fake/aaiqegjkrj_fjhgaunrgr_1.jpg b/sample_train_data/train/fake/aaiqegjkrj_fjhgaunrgr_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7367445e2c54939289c5947a73c4858c16685668
Binary files /dev/null and b/sample_train_data/train/fake/aaiqegjkrj_fjhgaunrgr_1.jpg differ
diff --git a/sample_train_data/train/fake/aavqiqgbzl_mjqktsbgyj_0.jpg b/sample_train_data/train/fake/aavqiqgbzl_mjqktsbgyj_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..613683831b72500babe43c48e5955bacde0695f7
Binary files /dev/null and b/sample_train_data/train/fake/aavqiqgbzl_mjqktsbgyj_0.jpg differ
diff --git a/sample_train_data/train/fake/aavqiqgbzl_mjqktsbgyj_1.jpg b/sample_train_data/train/fake/aavqiqgbzl_mjqktsbgyj_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7b98c3307fdfc2184b836348128c6ca71e458a89
Binary files /dev/null and b/sample_train_data/train/fake/aavqiqgbzl_mjqktsbgyj_1.jpg differ
diff --git a/sample_train_data/train/fake/aawwkinixp_qgfztfdjeo_0.jpg b/sample_train_data/train/fake/aawwkinixp_qgfztfdjeo_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..626d73dce5de0fb2e9ab7ec7991190939f7aa943
Binary files /dev/null and b/sample_train_data/train/fake/aawwkinixp_qgfztfdjeo_0.jpg differ
diff --git a/sample_train_data/train/fake/ablakozzyi_qtocjfadqh_0.jpg b/sample_train_data/train/fake/ablakozzyi_qtocjfadqh_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2ca90013b9ca3e46dedf0eccf8797a2d28e39c44
Binary files /dev/null and b/sample_train_data/train/fake/ablakozzyi_qtocjfadqh_0.jpg differ
diff --git a/sample_train_data/train/fake/abszlbwsaz_nseapxuzsx_1.jpg b/sample_train_data/train/fake/abszlbwsaz_nseapxuzsx_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..66d510d2bd3e5ac84022f34bb1e4c3ecbaf7fbfd
Binary files /dev/null and b/sample_train_data/train/fake/abszlbwsaz_nseapxuzsx_1.jpg differ
diff --git a/sample_train_data/train/fake/abszlbwsaz_nseapxuzsx_2.jpg b/sample_train_data/train/fake/abszlbwsaz_nseapxuzsx_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0e9492d82a559ac6c8424e132e19267e1c7b924f
Binary files /dev/null and b/sample_train_data/train/fake/abszlbwsaz_nseapxuzsx_2.jpg differ
diff --git a/sample_train_data/train/fake/acxnxvbsxk_fjlyaizcwc_0.jpg b/sample_train_data/train/fake/acxnxvbsxk_fjlyaizcwc_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2c2175384d7322159a66edb62738983a40c7f14b
Binary files /dev/null and b/sample_train_data/train/fake/acxnxvbsxk_fjlyaizcwc_0.jpg differ
diff --git a/sample_train_data/train/fake/aetbhpddib_rnckeghtyz_5.jpg b/sample_train_data/train/fake/aetbhpddib_rnckeghtyz_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fecbe8f2597a9e3f35a8ba77ae5d09c2766a7d2b
Binary files /dev/null and b/sample_train_data/train/fake/aetbhpddib_rnckeghtyz_5.jpg differ
diff --git a/sample_train_data/train/fake/aghlanmigg_stybihvfba_6.jpg b/sample_train_data/train/fake/aghlanmigg_stybihvfba_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a280b871b4d892588bb40457c7b2db3153836e25
Binary files /dev/null and b/sample_train_data/train/fake/aghlanmigg_stybihvfba_6.jpg differ
diff --git a/sample_train_data/train/fake/ahxmjmqsgx_fxmtkvitfw_1.jpg b/sample_train_data/train/fake/ahxmjmqsgx_fxmtkvitfw_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..35106c9ab6d591576fc86369a324524502cc74a0
Binary files /dev/null and b/sample_train_data/train/fake/ahxmjmqsgx_fxmtkvitfw_1.jpg differ
diff --git a/sample_train_data/train/fake/akndzxxbai_ryfqnbcpmt_6.jpg b/sample_train_data/train/fake/akndzxxbai_ryfqnbcpmt_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d0ad4f567b45c078ceeafdb5bbf15a22ba604838
Binary files /dev/null and b/sample_train_data/train/fake/akndzxxbai_ryfqnbcpmt_6.jpg differ
diff --git a/sample_train_data/train/fake/ambfrhxhxr_wszvhoeuyz_6.jpg b/sample_train_data/train/fake/ambfrhxhxr_wszvhoeuyz_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3fce13ca75886644c6e096a06b700b777967db43
Binary files /dev/null and b/sample_train_data/train/fake/ambfrhxhxr_wszvhoeuyz_6.jpg differ
diff --git a/sample_train_data/train/fake/ambzbconcm_wihxahqfwx_0.jpg b/sample_train_data/train/fake/ambzbconcm_wihxahqfwx_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..85e2df143dfb4ac5bd8f95efe93b6aec4e7f0791
Binary files /dev/null and b/sample_train_data/train/fake/ambzbconcm_wihxahqfwx_0.jpg differ
diff --git a/sample_train_data/train/fake/ambzbconcm_wihxahqfwx_1.jpg b/sample_train_data/train/fake/ambzbconcm_wihxahqfwx_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..edb922264c73217b1d71a5394516e19460d701a1
Binary files /dev/null and b/sample_train_data/train/fake/ambzbconcm_wihxahqfwx_1.jpg differ
diff --git a/sample_train_data/train/fake/andtikykcc_cfaqbobudg_0.jpg b/sample_train_data/train/fake/andtikykcc_cfaqbobudg_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..34877dce738c2fefb26f5dbbb2e32821be78a195
Binary files /dev/null and b/sample_train_data/train/fake/andtikykcc_cfaqbobudg_0.jpg differ
diff --git a/sample_train_data/train/fake/anoehnostw_tpztvhiiyt_2.jpg b/sample_train_data/train/fake/anoehnostw_tpztvhiiyt_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..45c2bce3e84a00be0a0fc0c4f087c5d8b070c331
Binary files /dev/null and b/sample_train_data/train/fake/anoehnostw_tpztvhiiyt_2.jpg differ
diff --git a/sample_train_data/train/fake/aokhvkoynm_qflpehfxtp_0.jpg b/sample_train_data/train/fake/aokhvkoynm_qflpehfxtp_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3dc9868695f9ba54e5671a109af8767d7d9a7413
Binary files /dev/null and b/sample_train_data/train/fake/aokhvkoynm_qflpehfxtp_0.jpg differ
diff --git a/sample_train_data/train/fake/apjktzsawg_kfqoigflcg_6.jpg b/sample_train_data/train/fake/apjktzsawg_kfqoigflcg_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..aad6eed48c821642e5b70871248bb55eb22b2815
Binary files /dev/null and b/sample_train_data/train/fake/apjktzsawg_kfqoigflcg_6.jpg differ
diff --git a/sample_train_data/train/fake/aprtfacuwr_rjxtsiycme_7.jpg b/sample_train_data/train/fake/aprtfacuwr_rjxtsiycme_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..28aebfd4b5e6048bf128e511111a8d982b462501
Binary files /dev/null and b/sample_train_data/train/fake/aprtfacuwr_rjxtsiycme_7.jpg differ
diff --git a/sample_train_data/train/fake/aqcmtcybpq_veecjbgkph_1.jpg b/sample_train_data/train/fake/aqcmtcybpq_veecjbgkph_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fcaca6c82c512fa9d3352117af91711ed267a960
Binary files /dev/null and b/sample_train_data/train/fake/aqcmtcybpq_veecjbgkph_1.jpg differ
diff --git a/sample_train_data/train/fake/arbtkzqayi_iydyvuvtuy_5.jpg b/sample_train_data/train/fake/arbtkzqayi_iydyvuvtuy_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..047796091af66c509fc8e4b44e89b3b9affefa63
Binary files /dev/null and b/sample_train_data/train/fake/arbtkzqayi_iydyvuvtuy_5.jpg differ
diff --git a/sample_train_data/train/fake/ascqxdkrgh_kxqvmerjaa_6.jpg b/sample_train_data/train/fake/ascqxdkrgh_kxqvmerjaa_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3eafb556e8c25b7d37e21442477243665a0ea52b
Binary files /dev/null and b/sample_train_data/train/fake/ascqxdkrgh_kxqvmerjaa_6.jpg differ
diff --git a/sample_train_data/train/fake/atosiqqljt_nkmbyjikgt_3.jpg b/sample_train_data/train/fake/atosiqqljt_nkmbyjikgt_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..92a3abf2f1bb3647ef2259a7298222fcae95521a
Binary files /dev/null and b/sample_train_data/train/fake/atosiqqljt_nkmbyjikgt_3.jpg differ
diff --git a/sample_train_data/train/fake/avjlhxlhbi_wwftgfyzln_0.jpg b/sample_train_data/train/fake/avjlhxlhbi_wwftgfyzln_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a7d0efc75c88de41ae9af20f4bc2cdf56eec65cf
Binary files /dev/null and b/sample_train_data/train/fake/avjlhxlhbi_wwftgfyzln_0.jpg differ
diff --git a/sample_train_data/train/fake/awfdmxsbnj_neqaqslbon_9.jpg b/sample_train_data/train/fake/awfdmxsbnj_neqaqslbon_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..144c5c9d3eedfd9b5a809abbfeefc893bfed4010
Binary files /dev/null and b/sample_train_data/train/fake/awfdmxsbnj_neqaqslbon_9.jpg differ
diff --git a/sample_train_data/train/real/aaragvjucp_1.jpg b/sample_train_data/train/real/aaragvjucp_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e143be17263696ce5ef45a854da28a2253f583c8
Binary files /dev/null and b/sample_train_data/train/real/aaragvjucp_1.jpg differ
diff --git a/sample_train_data/train/real/abozmriuej_0.jpg b/sample_train_data/train/real/abozmriuej_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..1775d7db7dc6e4b9b85ebf1ca6fda871ef7ca16a
Binary files /dev/null and b/sample_train_data/train/real/abozmriuej_0.jpg differ
diff --git a/sample_train_data/train/real/abpwapkxel_0.jpg b/sample_train_data/train/real/abpwapkxel_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3346796db59176451bcbf36f2ac5893af0849d44
Binary files /dev/null and b/sample_train_data/train/real/abpwapkxel_0.jpg differ
diff --git a/sample_train_data/train/real/accnrseufh_1.jpg b/sample_train_data/train/real/accnrseufh_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..b4eed01f446cb2e52b3fe6b85d3bf648ebdcb6b5
Binary files /dev/null and b/sample_train_data/train/real/accnrseufh_1.jpg differ
diff --git a/sample_train_data/train/real/acguxjvmju_6.jpg b/sample_train_data/train/real/acguxjvmju_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2f6450448fa2fe427b968e4f2f46097725c8ed3b
Binary files /dev/null and b/sample_train_data/train/real/acguxjvmju_6.jpg differ
diff --git a/sample_train_data/train/real/acgzblwsgw_4.jpg b/sample_train_data/train/real/acgzblwsgw_4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..58ad33e5cc076bf87fbfbbfd718acc768ac71479
Binary files /dev/null and b/sample_train_data/train/real/acgzblwsgw_4.jpg differ
diff --git a/sample_train_data/train/real/acmhexsysx_6.jpg b/sample_train_data/train/real/acmhexsysx_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a41faeda70efdb091a3335a398fc3dcbad495089
Binary files /dev/null and b/sample_train_data/train/real/acmhexsysx_6.jpg differ
diff --git a/sample_train_data/train/real/acscknxbjl_1.jpg b/sample_train_data/train/real/acscknxbjl_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9d797b8b52e2e0b08e35d42b7ddcccaa12b4a8e9
Binary files /dev/null and b/sample_train_data/train/real/acscknxbjl_1.jpg differ
diff --git a/sample_train_data/train/real/acsiidpvei_2.jpg b/sample_train_data/train/real/acsiidpvei_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..1d0b3df0d16b83c0a10a52214818d57156a1cafa
Binary files /dev/null and b/sample_train_data/train/real/acsiidpvei_2.jpg differ
diff --git a/sample_train_data/train/real/adciglvoob_5.jpg b/sample_train_data/train/real/adciglvoob_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0e88c40eef769423ead54dbf68d9170424086550
Binary files /dev/null and b/sample_train_data/train/real/adciglvoob_5.jpg differ
diff --git a/sample_train_data/train/real/adqftoxbjl_6.jpg b/sample_train_data/train/real/adqftoxbjl_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4a28f92120a772788708ab3d3805ea53afd1bdd0
Binary files /dev/null and b/sample_train_data/train/real/adqftoxbjl_6.jpg differ
diff --git a/sample_train_data/train/real/aeykoomsoa_0.jpg b/sample_train_data/train/real/aeykoomsoa_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5a43949b12c48e15b47f9f0685918186fe142a5f
Binary files /dev/null and b/sample_train_data/train/real/aeykoomsoa_0.jpg differ
diff --git a/sample_train_data/train/real/affyecftqy_3.jpg b/sample_train_data/train/real/affyecftqy_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..18c6422d6b99b204e908388bfa73e7146c9a3f50
Binary files /dev/null and b/sample_train_data/train/real/affyecftqy_3.jpg differ
diff --git a/sample_train_data/train/real/afmhdngiib_6.jpg b/sample_train_data/train/real/afmhdngiib_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..aec92f4ac1d8dc999bdd0be15d165e5678965a0d
Binary files /dev/null and b/sample_train_data/train/real/afmhdngiib_6.jpg differ
diff --git a/sample_train_data/train/real/afzglsuwio_7.jpg b/sample_train_data/train/real/afzglsuwio_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..342a9d6d774e9a18d78b57533f87613017642870
Binary files /dev/null and b/sample_train_data/train/real/afzglsuwio_7.jpg differ
diff --git a/sample_train_data/train/real/agmurwijnw_7.jpg b/sample_train_data/train/real/agmurwijnw_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..20605aef23cb324a34894223c646a7b97aecd61c
Binary files /dev/null and b/sample_train_data/train/real/agmurwijnw_7.jpg differ
diff --git a/sample_train_data/train/real/ahmtarbkeg_3.jpg b/sample_train_data/train/real/ahmtarbkeg_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fe3ec2125af5dae5aa9f466bcee5f91f1222ae18
Binary files /dev/null and b/sample_train_data/train/real/ahmtarbkeg_3.jpg differ
diff --git a/sample_train_data/train/real/aitfcfdpjs_7.jpg b/sample_train_data/train/real/aitfcfdpjs_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e87535cdb56002b54521b4eb7a6b2d4c685a411c
Binary files /dev/null and b/sample_train_data/train/real/aitfcfdpjs_7.jpg differ
diff --git a/sample_train_data/train/real/akcxufnmsr_9.jpg b/sample_train_data/train/real/akcxufnmsr_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..cd2405e69b13de806891d1e28f2c43ef00af44cf
Binary files /dev/null and b/sample_train_data/train/real/akcxufnmsr_9.jpg differ
diff --git a/sample_train_data/train/real/aldtqwchhe_0.jpg b/sample_train_data/train/real/aldtqwchhe_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..af3db02fbefcc34406dc5c61bc4a99b3cf8c015a
Binary files /dev/null and b/sample_train_data/train/real/aldtqwchhe_0.jpg differ
diff --git a/sample_train_data/train/real/amnzjdtmtg_0.jpg b/sample_train_data/train/real/amnzjdtmtg_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d5fe68ed80a77fb48a0acdeea4b6d8104a35ab88
Binary files /dev/null and b/sample_train_data/train/real/amnzjdtmtg_0.jpg differ
diff --git a/sample_train_data/train/real/aodczfleto_3.jpg b/sample_train_data/train/real/aodczfleto_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e758e6120a4fb557dd542a71af20407452710272
Binary files /dev/null and b/sample_train_data/train/real/aodczfleto_3.jpg differ
diff --git a/sample_train_data/train/real/apjycnnpfi_9.jpg b/sample_train_data/train/real/apjycnnpfi_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..521c77e92f0a337c879b82b150ef0b6f6d8f8bb0
Binary files /dev/null and b/sample_train_data/train/real/apjycnnpfi_9.jpg differ
diff --git a/sample_train_data/train/real/aretpmdutp_4.jpg b/sample_train_data/train/real/aretpmdutp_4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9aed10d842307035c1446570b469291219da30dc
Binary files /dev/null and b/sample_train_data/train/real/aretpmdutp_4.jpg differ
diff --git a/sample_train_data/train/real/asjeirtlwd_5.jpg b/sample_train_data/train/real/asjeirtlwd_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e558c177ce60a57c21adcf8b3af3ca582c50431b
Binary files /dev/null and b/sample_train_data/train/real/asjeirtlwd_5.jpg differ
diff --git a/sample_train_data/train/real/atwqjgynix_7.jpg b/sample_train_data/train/real/atwqjgynix_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3b473aa14735e66ed30faf9cd95678656c5d62ec
Binary files /dev/null and b/sample_train_data/train/real/atwqjgynix_7.jpg differ
diff --git a/sample_train_data/train/real/azvuadmhnf_7.jpg b/sample_train_data/train/real/azvuadmhnf_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d6cbae2ed6169f9ff49e55c3ae02ac0d7a43c169
Binary files /dev/null and b/sample_train_data/train/real/azvuadmhnf_7.jpg differ
diff --git a/sample_train_data/valid/fake/aabyjxwqyo_ppulbuhtsc_0.jpg b/sample_train_data/valid/fake/aabyjxwqyo_ppulbuhtsc_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5fbe892d9021f5b912ab21783deaf12e93eb97b6
Binary files /dev/null and b/sample_train_data/valid/fake/aabyjxwqyo_ppulbuhtsc_0.jpg differ
diff --git a/sample_train_data/valid/fake/aabyjxwqyo_ppulbuhtsc_1.jpg b/sample_train_data/valid/fake/aabyjxwqyo_ppulbuhtsc_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ea9ba6345b17a18e9586cd7f38343e10f33daebe
Binary files /dev/null and b/sample_train_data/valid/fake/aabyjxwqyo_ppulbuhtsc_1.jpg differ
diff --git a/sample_train_data/valid/fake/aabyjxwqyo_ppulbuhtsc_2.jpg b/sample_train_data/valid/fake/aabyjxwqyo_ppulbuhtsc_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e1f46b4fee9ba77b03e7ea4d8e186ede04bf1763
Binary files /dev/null and b/sample_train_data/valid/fake/aabyjxwqyo_ppulbuhtsc_2.jpg differ
diff --git a/sample_train_data/valid/fake/aavqiqgbzl_mjqktsbgyj_0.jpg b/sample_train_data/valid/fake/aavqiqgbzl_mjqktsbgyj_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..613683831b72500babe43c48e5955bacde0695f7
Binary files /dev/null and b/sample_train_data/valid/fake/aavqiqgbzl_mjqktsbgyj_0.jpg differ
diff --git a/sample_train_data/valid/fake/aavqiqgbzl_mjqktsbgyj_1.jpg b/sample_train_data/valid/fake/aavqiqgbzl_mjqktsbgyj_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7b98c3307fdfc2184b836348128c6ca71e458a89
Binary files /dev/null and b/sample_train_data/valid/fake/aavqiqgbzl_mjqktsbgyj_1.jpg differ
diff --git a/sample_train_data/valid/fake/aawwkinixp_qgfztfdjeo_0.jpg b/sample_train_data/valid/fake/aawwkinixp_qgfztfdjeo_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..626d73dce5de0fb2e9ab7ec7991190939f7aa943
Binary files /dev/null and b/sample_train_data/valid/fake/aawwkinixp_qgfztfdjeo_0.jpg differ
diff --git a/sample_train_data/valid/fake/ablakozzyi_qtocjfadqh_0.jpg b/sample_train_data/valid/fake/ablakozzyi_qtocjfadqh_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2ca90013b9ca3e46dedf0eccf8797a2d28e39c44
Binary files /dev/null and b/sample_train_data/valid/fake/ablakozzyi_qtocjfadqh_0.jpg differ
diff --git a/sample_train_data/valid/fake/abszlbwsaz_nseapxuzsx_1.jpg b/sample_train_data/valid/fake/abszlbwsaz_nseapxuzsx_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..66d510d2bd3e5ac84022f34bb1e4c3ecbaf7fbfd
Binary files /dev/null and b/sample_train_data/valid/fake/abszlbwsaz_nseapxuzsx_1.jpg differ
diff --git a/sample_train_data/valid/fake/abszlbwsaz_nseapxuzsx_2.jpg b/sample_train_data/valid/fake/abszlbwsaz_nseapxuzsx_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0e9492d82a559ac6c8424e132e19267e1c7b924f
Binary files /dev/null and b/sample_train_data/valid/fake/abszlbwsaz_nseapxuzsx_2.jpg differ
diff --git a/sample_train_data/valid/fake/acxnxvbsxk_fjlyaizcwc_0.jpg b/sample_train_data/valid/fake/acxnxvbsxk_fjlyaizcwc_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2c2175384d7322159a66edb62738983a40c7f14b
Binary files /dev/null and b/sample_train_data/valid/fake/acxnxvbsxk_fjlyaizcwc_0.jpg differ
diff --git a/sample_train_data/valid/fake/aetbhpddib_rnckeghtyz_5.jpg b/sample_train_data/valid/fake/aetbhpddib_rnckeghtyz_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fecbe8f2597a9e3f35a8ba77ae5d09c2766a7d2b
Binary files /dev/null and b/sample_train_data/valid/fake/aetbhpddib_rnckeghtyz_5.jpg differ
diff --git a/sample_train_data/valid/fake/aghlanmigg_stybihvfba_6.jpg b/sample_train_data/valid/fake/aghlanmigg_stybihvfba_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a280b871b4d892588bb40457c7b2db3153836e25
Binary files /dev/null and b/sample_train_data/valid/fake/aghlanmigg_stybihvfba_6.jpg differ
diff --git a/sample_train_data/valid/fake/ahxmjmqsgx_fxmtkvitfw_1.jpg b/sample_train_data/valid/fake/ahxmjmqsgx_fxmtkvitfw_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..35106c9ab6d591576fc86369a324524502cc74a0
Binary files /dev/null and b/sample_train_data/valid/fake/ahxmjmqsgx_fxmtkvitfw_1.jpg differ
diff --git a/sample_train_data/valid/fake/akndzxxbai_ryfqnbcpmt_6.jpg b/sample_train_data/valid/fake/akndzxxbai_ryfqnbcpmt_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d0ad4f567b45c078ceeafdb5bbf15a22ba604838
Binary files /dev/null and b/sample_train_data/valid/fake/akndzxxbai_ryfqnbcpmt_6.jpg differ
diff --git a/sample_train_data/valid/fake/ambfrhxhxr_wszvhoeuyz_6.jpg b/sample_train_data/valid/fake/ambfrhxhxr_wszvhoeuyz_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3fce13ca75886644c6e096a06b700b777967db43
Binary files /dev/null and b/sample_train_data/valid/fake/ambfrhxhxr_wszvhoeuyz_6.jpg differ
diff --git a/sample_train_data/valid/fake/ambzbconcm_wihxahqfwx_0.jpg b/sample_train_data/valid/fake/ambzbconcm_wihxahqfwx_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..85e2df143dfb4ac5bd8f95efe93b6aec4e7f0791
Binary files /dev/null and b/sample_train_data/valid/fake/ambzbconcm_wihxahqfwx_0.jpg differ
diff --git a/sample_train_data/valid/fake/ambzbconcm_wihxahqfwx_1.jpg b/sample_train_data/valid/fake/ambzbconcm_wihxahqfwx_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..edb922264c73217b1d71a5394516e19460d701a1
Binary files /dev/null and b/sample_train_data/valid/fake/ambzbconcm_wihxahqfwx_1.jpg differ
diff --git a/sample_train_data/valid/fake/andtikykcc_cfaqbobudg_0.jpg b/sample_train_data/valid/fake/andtikykcc_cfaqbobudg_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..34877dce738c2fefb26f5dbbb2e32821be78a195
Binary files /dev/null and b/sample_train_data/valid/fake/andtikykcc_cfaqbobudg_0.jpg differ
diff --git a/sample_train_data/valid/fake/anoehnostw_tpztvhiiyt_2.jpg b/sample_train_data/valid/fake/anoehnostw_tpztvhiiyt_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..45c2bce3e84a00be0a0fc0c4f087c5d8b070c331
Binary files /dev/null and b/sample_train_data/valid/fake/anoehnostw_tpztvhiiyt_2.jpg differ
diff --git a/sample_train_data/valid/fake/aokhvkoynm_qflpehfxtp_0.jpg b/sample_train_data/valid/fake/aokhvkoynm_qflpehfxtp_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3dc9868695f9ba54e5671a109af8767d7d9a7413
Binary files /dev/null and b/sample_train_data/valid/fake/aokhvkoynm_qflpehfxtp_0.jpg differ
diff --git a/sample_train_data/valid/fake/apjktzsawg_kfqoigflcg_6.jpg b/sample_train_data/valid/fake/apjktzsawg_kfqoigflcg_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..aad6eed48c821642e5b70871248bb55eb22b2815
Binary files /dev/null and b/sample_train_data/valid/fake/apjktzsawg_kfqoigflcg_6.jpg differ
diff --git a/sample_train_data/valid/fake/aprtfacuwr_rjxtsiycme_7.jpg b/sample_train_data/valid/fake/aprtfacuwr_rjxtsiycme_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..28aebfd4b5e6048bf128e511111a8d982b462501
Binary files /dev/null and b/sample_train_data/valid/fake/aprtfacuwr_rjxtsiycme_7.jpg differ
diff --git a/sample_train_data/valid/fake/aqcmtcybpq_veecjbgkph_1.jpg b/sample_train_data/valid/fake/aqcmtcybpq_veecjbgkph_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fcaca6c82c512fa9d3352117af91711ed267a960
Binary files /dev/null and b/sample_train_data/valid/fake/aqcmtcybpq_veecjbgkph_1.jpg differ
diff --git a/sample_train_data/valid/fake/arbtkzqayi_iydyvuvtuy_5.jpg b/sample_train_data/valid/fake/arbtkzqayi_iydyvuvtuy_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..047796091af66c509fc8e4b44e89b3b9affefa63
Binary files /dev/null and b/sample_train_data/valid/fake/arbtkzqayi_iydyvuvtuy_5.jpg differ
diff --git a/sample_train_data/valid/fake/ascqxdkrgh_kxqvmerjaa_6.jpg b/sample_train_data/valid/fake/ascqxdkrgh_kxqvmerjaa_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3eafb556e8c25b7d37e21442477243665a0ea52b
Binary files /dev/null and b/sample_train_data/valid/fake/ascqxdkrgh_kxqvmerjaa_6.jpg differ
diff --git a/sample_train_data/valid/fake/atosiqqljt_nkmbyjikgt_3.jpg b/sample_train_data/valid/fake/atosiqqljt_nkmbyjikgt_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..92a3abf2f1bb3647ef2259a7298222fcae95521a
Binary files /dev/null and b/sample_train_data/valid/fake/atosiqqljt_nkmbyjikgt_3.jpg differ
diff --git a/sample_train_data/valid/fake/avjlhxlhbi_wwftgfyzln_0.jpg b/sample_train_data/valid/fake/avjlhxlhbi_wwftgfyzln_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a7d0efc75c88de41ae9af20f4bc2cdf56eec65cf
Binary files /dev/null and b/sample_train_data/valid/fake/avjlhxlhbi_wwftgfyzln_0.jpg differ
diff --git a/sample_train_data/valid/fake/awfdmxsbnj_neqaqslbon_9.jpg b/sample_train_data/valid/fake/awfdmxsbnj_neqaqslbon_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..144c5c9d3eedfd9b5a809abbfeefc893bfed4010
Binary files /dev/null and b/sample_train_data/valid/fake/awfdmxsbnj_neqaqslbon_9.jpg differ
diff --git a/sample_train_data/valid/real/aaapwqhxli_0.jpg b/sample_train_data/valid/real/aaapwqhxli_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9e6143e50fddcec0cb651c24bf5d6ed616db8dd3
Binary files /dev/null and b/sample_train_data/valid/real/aaapwqhxli_0.jpg differ
diff --git a/sample_train_data/valid/real/aaapwqhxli_1.jpg b/sample_train_data/valid/real/aaapwqhxli_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4501edd7a8bae6ebee29d839a6fb19ff910d2f92
Binary files /dev/null and b/sample_train_data/valid/real/aaapwqhxli_1.jpg differ
diff --git a/sample_train_data/valid/real/aaapwqhxli_2.jpg b/sample_train_data/valid/real/aaapwqhxli_2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fde3b396d9b20328922739c18cb2fc3bcadea552
Binary files /dev/null and b/sample_train_data/valid/real/aaapwqhxli_2.jpg differ
diff --git a/sample_train_data/valid/real/aaragvjucp_1.jpg b/sample_train_data/valid/real/aaragvjucp_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e143be17263696ce5ef45a854da28a2253f583c8
Binary files /dev/null and b/sample_train_data/valid/real/aaragvjucp_1.jpg differ
diff --git a/sample_train_data/valid/real/abpwapkxel_0.jpg b/sample_train_data/valid/real/abpwapkxel_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3346796db59176451bcbf36f2ac5893af0849d44
Binary files /dev/null and b/sample_train_data/valid/real/abpwapkxel_0.jpg differ
diff --git a/sample_train_data/valid/real/acguxjvmju_6.jpg b/sample_train_data/valid/real/acguxjvmju_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2f6450448fa2fe427b968e4f2f46097725c8ed3b
Binary files /dev/null and b/sample_train_data/valid/real/acguxjvmju_6.jpg differ
diff --git a/sample_train_data/valid/real/acgzblwsgw_4.jpg b/sample_train_data/valid/real/acgzblwsgw_4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..58ad33e5cc076bf87fbfbbfd718acc768ac71479
Binary files /dev/null and b/sample_train_data/valid/real/acgzblwsgw_4.jpg differ
diff --git a/sample_train_data/valid/real/acmhexsysx_6.jpg b/sample_train_data/valid/real/acmhexsysx_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a41faeda70efdb091a3335a398fc3dcbad495089
Binary files /dev/null and b/sample_train_data/valid/real/acmhexsysx_6.jpg differ
diff --git a/sample_train_data/valid/real/acscknxbjl_1.jpg b/sample_train_data/valid/real/acscknxbjl_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9d797b8b52e2e0b08e35d42b7ddcccaa12b4a8e9
Binary files /dev/null and b/sample_train_data/valid/real/acscknxbjl_1.jpg differ
diff --git a/sample_train_data/valid/real/adciglvoob_5.jpg b/sample_train_data/valid/real/adciglvoob_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0e88c40eef769423ead54dbf68d9170424086550
Binary files /dev/null and b/sample_train_data/valid/real/adciglvoob_5.jpg differ
diff --git a/sample_train_data/valid/real/adqftoxbjl_6.jpg b/sample_train_data/valid/real/adqftoxbjl_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4a28f92120a772788708ab3d3805ea53afd1bdd0
Binary files /dev/null and b/sample_train_data/valid/real/adqftoxbjl_6.jpg differ
diff --git a/sample_train_data/valid/real/aeykoomsoa_0.jpg b/sample_train_data/valid/real/aeykoomsoa_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5a43949b12c48e15b47f9f0685918186fe142a5f
Binary files /dev/null and b/sample_train_data/valid/real/aeykoomsoa_0.jpg differ
diff --git a/sample_train_data/valid/real/affyecftqy_3.jpg b/sample_train_data/valid/real/affyecftqy_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..18c6422d6b99b204e908388bfa73e7146c9a3f50
Binary files /dev/null and b/sample_train_data/valid/real/affyecftqy_3.jpg differ
diff --git a/sample_train_data/valid/real/afmhdngiib_6.jpg b/sample_train_data/valid/real/afmhdngiib_6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..aec92f4ac1d8dc999bdd0be15d165e5678965a0d
Binary files /dev/null and b/sample_train_data/valid/real/afmhdngiib_6.jpg differ
diff --git a/sample_train_data/valid/real/afzglsuwio_7.jpg b/sample_train_data/valid/real/afzglsuwio_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..342a9d6d774e9a18d78b57533f87613017642870
Binary files /dev/null and b/sample_train_data/valid/real/afzglsuwio_7.jpg differ
diff --git a/sample_train_data/valid/real/agmurwijnw_7.jpg b/sample_train_data/valid/real/agmurwijnw_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..20605aef23cb324a34894223c646a7b97aecd61c
Binary files /dev/null and b/sample_train_data/valid/real/agmurwijnw_7.jpg differ
diff --git a/sample_train_data/valid/real/ahmtarbkeg_3.jpg b/sample_train_data/valid/real/ahmtarbkeg_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fe3ec2125af5dae5aa9f466bcee5f91f1222ae18
Binary files /dev/null and b/sample_train_data/valid/real/ahmtarbkeg_3.jpg differ
diff --git a/sample_train_data/valid/real/aitfcfdpjs_7.jpg b/sample_train_data/valid/real/aitfcfdpjs_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e87535cdb56002b54521b4eb7a6b2d4c685a411c
Binary files /dev/null and b/sample_train_data/valid/real/aitfcfdpjs_7.jpg differ
diff --git a/sample_train_data/valid/real/akcxufnmsr_9.jpg b/sample_train_data/valid/real/akcxufnmsr_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..cd2405e69b13de806891d1e28f2c43ef00af44cf
Binary files /dev/null and b/sample_train_data/valid/real/akcxufnmsr_9.jpg differ
diff --git a/sample_train_data/valid/real/aldtqwchhe_0.jpg b/sample_train_data/valid/real/aldtqwchhe_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..af3db02fbefcc34406dc5c61bc4a99b3cf8c015a
Binary files /dev/null and b/sample_train_data/valid/real/aldtqwchhe_0.jpg differ
diff --git a/sample_train_data/valid/real/amnzjdtmtg_0.jpg b/sample_train_data/valid/real/amnzjdtmtg_0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d5fe68ed80a77fb48a0acdeea4b6d8104a35ab88
Binary files /dev/null and b/sample_train_data/valid/real/amnzjdtmtg_0.jpg differ
diff --git a/sample_train_data/valid/real/aodczfleto_3.jpg b/sample_train_data/valid/real/aodczfleto_3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e758e6120a4fb557dd542a71af20407452710272
Binary files /dev/null and b/sample_train_data/valid/real/aodczfleto_3.jpg differ
diff --git a/sample_train_data/valid/real/apjycnnpfi_9.jpg b/sample_train_data/valid/real/apjycnnpfi_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..521c77e92f0a337c879b82b150ef0b6f6d8f8bb0
Binary files /dev/null and b/sample_train_data/valid/real/apjycnnpfi_9.jpg differ
diff --git a/sample_train_data/valid/real/aretpmdutp_4.jpg b/sample_train_data/valid/real/aretpmdutp_4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9aed10d842307035c1446570b469291219da30dc
Binary files /dev/null and b/sample_train_data/valid/real/aretpmdutp_4.jpg differ
diff --git a/sample_train_data/valid/real/asjeirtlwd_5.jpg b/sample_train_data/valid/real/asjeirtlwd_5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e558c177ce60a57c21adcf8b3af3ca582c50431b
Binary files /dev/null and b/sample_train_data/valid/real/asjeirtlwd_5.jpg differ
diff --git a/sample_train_data/valid/real/atwqjgynix_7.jpg b/sample_train_data/valid/real/atwqjgynix_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3b473aa14735e66ed30faf9cd95678656c5d62ec
Binary files /dev/null and b/sample_train_data/valid/real/atwqjgynix_7.jpg differ
diff --git a/sample_train_data/valid/real/axrjmjewtw_9.jpg b/sample_train_data/valid/real/axrjmjewtw_9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..90dc041adb74d20c68fac7f4e54e36d1e55906d2
Binary files /dev/null and b/sample_train_data/valid/real/axrjmjewtw_9.jpg differ
diff --git a/sample_train_data/valid/real/azvuadmhnf_7.jpg b/sample_train_data/valid/real/azvuadmhnf_7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d6cbae2ed6169f9ff49e55c3ae02ac0d7a43c169
Binary files /dev/null and b/sample_train_data/valid/real/azvuadmhnf_7.jpg differ
diff --git a/train.py b/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..e308f20f5d04aa918f1e78a181c32fc2c2591073
--- /dev/null
+++ b/train.py
@@ -0,0 +1,208 @@
+import sys, os
+import numpy as np
+import torch
+from torch import nn
+import torch.optim as optim
+from torch.optim import lr_scheduler
+import time
+from time import perf_counter
+import pickle
+from model.config import load_config
+from model.genconvit_ed import GenConViTED
+from model.genconvit_vae import GenConViTVAE
+from dataset.loader import load_data, load_checkpoint
+import optparse
+
+config = load_config()
+device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+
+def load_pretrained(pretrained_model_filename):
+ assert os.path.isfile(
+ pretrained_model_filename
+ ), "Saved model file does not exist. Exiting."
+
+ model, optimizer, start_epoch, min_loss = load_checkpoint(
+ model, optimizer, filename=pretrained_model_filename
+ )
+ # now individually transfer the optimizer parts...
+ for state in optimizer.state.values():
+ for k, v in state.items():
+ if isinstance(v, torch.Tensor):
+ state[k] = v.to(device)
+ return model, optimizer, start_epoch, min_loss
+
+
+def train_model(
+ dir_path, mod, num_epochs, pretrained_model_filename, test_model, batch_size
+):
+ print("Loading data...")
+ dataloaders, dataset_sizes = load_data(dir_path, batch_size)
+ print("Done.")
+
+ if mod == "ed":
+ from train.train_ed import train, valid
+ model = GenConViTED(config)
+ else:
+ from train.train_vae import train, valid
+ model = GenConViTVAE(config)
+
+ optimizer = optim.Adam(
+ model.parameters(),
+ lr=float(config["learning_rate"]),
+ weight_decay=float(config["weight_decay"]),
+ )
+ criterion = nn.CrossEntropyLoss()
+ criterion.to(device)
+ mse = nn.MSELoss()
+ min_val_loss = int(config["min_val_loss"])
+ scheduler = lr_scheduler.StepLR(optimizer, step_size=15, gamma=0.1)
+
+ if pretrained_model_filename:
+ model, optimizer, start_epoch, min_loss = load_pretrained(
+ pretrained_model_filename
+ )
+
+ model.to(device)
+ torch.manual_seed(1)
+ train_loss, train_acc, valid_loss, valid_acc = [], [], [], []
+ since = time.time()
+
+ for epoch in range(0, num_epochs):
+ train_loss, train_acc, epoch_loss = train(
+ model,
+ device,
+ dataloaders["train"],
+ criterion,
+ optimizer,
+ epoch,
+ train_loss,
+ train_acc,
+ mse,
+ )
+ valid_loss, valid_acc = valid(
+ model,
+ device,
+ dataloaders["validation"],
+ criterion,
+ epoch,
+ valid_loss,
+ valid_acc,
+ mse,
+ )
+ scheduler.step()
+
+ time_elapsed = time.time() - since
+
+ print(
+ "Training complete in {:.0f}m {:.0f}s".format(
+ time_elapsed // 60, time_elapsed % 60
+ )
+ )
+
+ print("\nSaving model...\n")
+
+ file_path = os.path.join(
+ "weight",
+ f'genconvit_{mod}_{time.strftime("%b_%d_%Y_%H_%M_%S", time.localtime())}',
+ )
+
+ with open(f"{file_path}.pkl", "wb") as f:
+ pickle.dump([train_loss, train_acc, valid_loss, valid_acc], f)
+
+ state = {
+ "epoch": num_epochs + 1,
+ "state_dict": model.state_dict(),
+ "optimizer": optimizer.state_dict(),
+ "min_loss": epoch_loss,
+ }
+
+ weight = f"{file_path}.pth"
+ torch.save(state, weight)
+
+ print("Done.")
+
+ if test_model:
+ test(model, dataloaders, dataset_sizes, mod, weight)
+
+
+def test(model, dataloaders, dataset_sizes, mod, weight):
+ print("\nRunning test...\n")
+ model.eval()
+ checkpoint = torch.load(weight, map_location="cpu")
+ model.load_state_dict(checkpoint["state_dict"])
+ _ = model.eval()
+
+ Sum = 0
+ counter = 0
+ for inputs, labels in dataloaders["test"]:
+ inputs = inputs.to(device)
+ labels = labels.to(device)
+ if mod == "ed":
+ output = model(inputs).to(device).float()
+ else:
+ output = model(inputs)[0].to(device).float()
+
+ _, prediction = torch.max(output, 1)
+
+ pred_label = labels[prediction]
+ pred_label = pred_label.detach().cpu().numpy()
+ main_label = labels.detach().cpu().numpy()
+ bool_list = list(map(lambda x, y: x == y, pred_label, main_label))
+ Sum += sum(np.array(bool_list) * 1)
+ counter += 1
+ print(f"Pediction: {Sum}/{len(inputs)*counter}")
+
+ print(
+ f'Prediction: {Sum}/{dataset_sizes["test"]} {(Sum / dataset_sizes["test"]) * 100:.2f}%'
+ )
+
+
+def gen_parser():
+ parser = optparse.OptionParser("Train GenConViT model.")
+ parser.add_option(
+ "-e",
+ "--epoch",
+ type=int,
+ dest="epoch",
+ help="Number of epochs used for training the GenConvNextViT model.",
+ )
+ parser.add_option("-v", "--version", dest="version", help="Version 0.1.")
+ parser.add_option("-d", "--dir", dest="dir", help="Training data path.")
+ parser.add_option(
+ "-m",
+ "--model",
+ dest="model",
+ help="model ed or model vae, model variant: genconvit (A) ed or genconvit (B) vae.",
+ )
+ parser.add_option(
+ "-p",
+ "--pretrained",
+ dest="pretrained",
+ help="Saved model file name. If you want to continue from the previous trained model.",
+ )
+ parser.add_option("-t", "--test", dest="test", help="run test on test dataset.")
+ parser.add_option("-b", "--batch_size", dest="batch_size", help="batch size.")
+
+ (options, _) = parser.parse_args()
+
+ dir_path = options.dir
+ epoch = options.epoch
+ mod = "ed" if options.model == "ed" else "vae"
+ test_model = "y" if options.test else None
+ pretrained_model_filename = options.pretrained if options.pretrained else None
+ batch_size = options.batch_size if options.batch_size else config["batch_size"]
+
+ return dir_path, mod, epoch, pretrained_model_filename, test_model, int(batch_size)
+
+
+def main():
+ start_time = perf_counter()
+ path, mod, epoch, pretrained_model_filename, test_model, batch_size = gen_parser()
+ train_model(path, mod, epoch, pretrained_model_filename, test_model, batch_size)
+ end_time = perf_counter()
+ print("\n\n--- %s seconds ---" % (end_time - start_time))
+
+
+if __name__ == "__main__":
+ main()
diff --git a/train/__init__.py b/train/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/train/train_ed.py b/train/train_ed.py
new file mode 100644
index 0000000000000000000000000000000000000000..ae431055c92ffdaec40e96cde75c80b9b41511d8
--- /dev/null
+++ b/train/train_ed.py
@@ -0,0 +1,111 @@
+import torch
+
+
+def train(
+ model,
+ device,
+ train_loader,
+ criterion,
+ optimizer,
+ epoch,
+ train_loss,
+ train_acc,
+ mse=None,
+):
+ model.train()
+
+ curr_loss = 0
+ t_pred = 0
+ for batch_idx, (images, targets) in enumerate(train_loader):
+ images, targets = images.to(device), targets.to(device)
+ optimizer.zero_grad()
+ output = model(images).squeeze()
+ loss = criterion(output, targets)
+
+ loss.backward()
+ optimizer.step()
+
+ curr_loss += loss.sum().item()
+ _, preds = torch.max(output, 1)
+ t_pred += torch.sum(preds == targets.data).item()
+
+ if batch_idx % 10 == 0:
+ print(
+ "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
+ epoch,
+ batch_idx * len(images),
+ len(train_loader.dataset),
+ 100.0 * batch_idx / len(train_loader),
+ loss.item(),
+ )
+ )
+
+ train_loss.append(loss.sum().item() / len(images))
+ train_acc.append(preds.sum().item() / len(images))
+ epoch_loss = curr_loss / len(train_loader.dataset)
+ epoch_acc = t_pred / len(train_loader.dataset)
+
+ train_loss.append(epoch_loss)
+ train_acc.append(epoch_acc)
+
+ print(
+ "\nTrain set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
+ epoch_loss,
+ t_pred,
+ len(train_loader.dataset),
+ 100.0 * t_pred / len(train_loader.dataset),
+ )
+ )
+
+ return train_loss, train_acc, epoch_loss
+
+
+def valid(
+ model, device, test_loader, criterion, epoch, valid_loss, valid_acc, mse=None
+):
+ model.eval()
+ test_loss = 0
+ correct = 0
+
+ with torch.no_grad():
+ for batch_idx, (images, targets) in enumerate(test_loader):
+ images, targets = images.to(device), targets.to(device)
+ output = model(images).squeeze()
+
+ loss = criterion(output, targets)
+
+ test_loss += loss.sum().item()
+
+ _, preds = torch.max(output, 1)
+ correct += torch.sum(preds == targets.data)
+
+ if batch_idx % 10 == 0:
+ print(
+ "Valid Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
+ epoch,
+ batch_idx * len(images),
+ len(test_loader.dataset),
+ 100.0 * batch_idx / len(test_loader),
+ loss.item(),
+ )
+ )
+
+ valid_loss.append(loss.sum().item() / len(images))
+ valid_acc.append(preds.sum().item() / len(images))
+
+ epoch_loss = test_loss / len(test_loader.dataset)
+ epoch_acc = correct / len(test_loader.dataset)
+
+ valid_loss.append(epoch_loss)
+ valid_acc.append(epoch_acc.item())
+
+ print(
+ "Valid Set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
+ epoch_loss,
+ correct,
+ len(test_loader.dataset),
+ 100.0 * correct / len(test_loader.dataset),
+ )
+ )
+
+ return valid_loss, valid_acc
diff --git a/train/train_vae.py b/train/train_vae.py
new file mode 100644
index 0000000000000000000000000000000000000000..ab7c16d5f81f93c0d744e089ce4e0217f96485c8
--- /dev/null
+++ b/train/train_vae.py
@@ -0,0 +1,114 @@
+import torch
+
+
+def train(
+ model,
+ device,
+ train_loader,
+ criterion,
+ optimizer,
+ epoch,
+ train_loss,
+ train_acc,
+ mse,
+):
+ model.train()
+ curr_loss = 0
+ t_pred = 0
+
+ for batch_idx, (images, targets) in enumerate(train_loader):
+ images, targets = images.to(device), targets.to(device)
+ optimizer.zero_grad()
+ output, recons = model(images)
+ loss_m = criterion(output, targets)
+ vae = mse(recons, images)
+ loss = loss_m + vae # +model.encoder.kl
+
+ loss.backward()
+ optimizer.step()
+
+ curr_loss += loss.sum().item()
+ _, preds = torch.max(output, 1)
+ t_pred += torch.sum(preds == targets.data).item()
+
+ if batch_idx % 10 == 0:
+ print(
+ "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} vae_Loss {:.6f}".format(
+ epoch,
+ batch_idx * len(images),
+ len(train_loader.dataset),
+ 100.0 * batch_idx / len(train_loader),
+ loss_m.item(),
+ vae.item(),
+ )
+ )
+
+ train_loss.append(loss.sum().item() / len(images))
+ train_acc.append(preds.sum().item() / len(images))
+ epoch_loss = curr_loss / len(train_loader.dataset)
+ epoch_acc = t_pred / len(train_loader.dataset)
+
+ train_loss.append(epoch_loss)
+ train_acc.append(epoch_acc)
+
+ print(
+ "\nTrain set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
+ epoch_loss,
+ t_pred,
+ len(train_loader.dataset),
+ 100.0 * t_pred / len(train_loader.dataset),
+ )
+ )
+
+ return train_loss, train_acc, epoch_loss
+
+
+def valid(model, device, test_loader, criterion, epoch, valid_loss, valid_acc, mse):
+ model.eval()
+ test_loss = 0
+ correct = 0
+
+ with torch.no_grad():
+ for batch_idx, (images, targets) in enumerate(test_loader):
+ images, targets = images.to(device), targets.to(device)
+ output, recons = model(images)
+ loss_m = criterion(output, targets)
+ vae = mse(recons, images)
+ loss = loss_m + vae # +model.encoder.kl
+
+ test_loss += loss.sum().item() # sum up batch loss
+
+ _, preds = torch.max(output, 1)
+ correct += torch.sum(preds == targets.data)
+
+ if batch_idx % 10 == 0:
+ print(
+ "Valid Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} vae_Loss {:.6f}".format(
+ epoch,
+ batch_idx * len(images),
+ len(test_loader.dataset),
+ 100.0 * batch_idx / len(test_loader),
+ loss_m.item(),
+ vae.item(),
+ )
+ )
+
+ valid_loss.append(loss.sum().item() / len(images))
+ valid_acc.append(preds.sum().item() / len(images))
+
+ epoch_loss = test_loss / len(test_loader.dataset)
+ epoch_acc = correct / len(test_loader.dataset)
+
+ valid_loss.append(epoch_loss)
+ valid_acc.append(epoch_acc.item())
+
+ print(
+ "\nValid Set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
+ epoch_loss,
+ correct,
+ len(test_loader.dataset),
+ 100.0 * correct / len(test_loader.dataset),
+ )
+ )
+
+ return valid_loss, valid_acc