File size: 5,637 Bytes
d396d3b
ffa3342
d396d3b
 
ffa3342
d396d3b
 
ffa3342
d396d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa3342
d396d3b
 
ffa3342
 
d396d3b
ffa3342
 
 
d396d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import CTransformers  # For loading transformer models.
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings  # General embeddings from HuggingFace models.
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub

def get_pdf_text(pdf_docs):
    text = ""
    pdf_reader = PdfReader(pdf_docs)
    for page in pdf_reader.pages:
        text += page.extract_text()
    return text


def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks):
    # Load the desired embeddings model.
    embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
                                       model_kwargs={'device': 'cpu'})
    # embeddings = OpenAIEmbeddings()
    # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore


def get_conversation_chain(vectorstore):
    # llm = ChatOpenAI()
    # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
    llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q2_K.bin", model_type="llama")
    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    response = st.session_state.conversation({'query': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)

def get_text_file(docs):
    text = f.read()
    return text

def get_csv_file(docs):
    import pandas as pd
    text = ''

    data = pd.read_csv(docs)

    for index, row in data.iterrows():
        item_name = row[0]
        row_text = item_name
        for col_name in data.columns[1:]:
            row_text += '{} is {} '.format(col_name, row[col_name])
        text += row_text + '\n'

    return text

def get_json_file(docs):
    import json
    text = ''
    with open(docs, 'r') as f:
        json_data = json.load(f)

    for f_key, f_value in json_data.items():
        for s_value in f_value:
            text += str(f_key) + str(s_value)
        text += '\n'
    #print(text)
    return text

def get_hwp_file(docs):
    pass

def get_docs_file(docs):
    pass


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple PDFs",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with multiple PDFs :books:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                raw_text = ""
                for file in docs:
                    if file.type == 'text/plain':
                        #file is .txt
                        raw_text += get_text_file(file)
                    elif file.type == 'application/octet-stream':
                        #file is .pdf
                        raw_text += get_pdf_text(file)
                    elif file.type == 'text/csv':
                        #file is .csv
                        raw_text += get_csv_file(file)
                    elif file.type == 'application/json':
                        # file is .json
                        raw_text += get_json_file(file)
                    elif file.type == 'application/x-hwp':
                        # file is .hwp
                        raw_text += get_hwp_file(file)
                    elif file.type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
                        # file is .docs
                        raw_text += get_docs_file(file)


                # get the text chunks
                text_chunks = get_text_chunks(raw_text)

                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(
                    vectorstore)


if __name__ == '__main__':
    main()