File size: 5,637 Bytes
d396d3b ffa3342 d396d3b ffa3342 d396d3b ffa3342 d396d3b ffa3342 d396d3b ffa3342 d396d3b ffa3342 d396d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import CTransformers # For loading transformer models.
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
def get_pdf_text(pdf_docs):
text = ""
pdf_reader = PdfReader(pdf_docs)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
# Load the desired embeddings model.
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'})
# embeddings = OpenAIEmbeddings()
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
# llm = ChatOpenAI()
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q2_K.bin", model_type="llama")
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'query': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def get_text_file(docs):
text = f.read()
return text
def get_csv_file(docs):
import pandas as pd
text = ''
data = pd.read_csv(docs)
for index, row in data.iterrows():
item_name = row[0]
row_text = item_name
for col_name in data.columns[1:]:
row_text += '{} is {} '.format(col_name, row[col_name])
text += row_text + '\n'
return text
def get_json_file(docs):
import json
text = ''
with open(docs, 'r') as f:
json_data = json.load(f)
for f_key, f_value in json_data.items():
for s_value in f_value:
text += str(f_key) + str(s_value)
text += '\n'
#print(text)
return text
def get_hwp_file(docs):
pass
def get_docs_file(docs):
pass
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple PDFs",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
raw_text = ""
for file in docs:
if file.type == 'text/plain':
#file is .txt
raw_text += get_text_file(file)
elif file.type == 'application/octet-stream':
#file is .pdf
raw_text += get_pdf_text(file)
elif file.type == 'text/csv':
#file is .csv
raw_text += get_csv_file(file)
elif file.type == 'application/json':
# file is .json
raw_text += get_json_file(file)
elif file.type == 'application/x-hwp':
# file is .hwp
raw_text += get_hwp_file(file)
elif file.type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
# file is .docs
raw_text += get_docs_file(file)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main()
|