import gradio as gr from FootDetection import FootDetection # Initialize model (first run will auto-download weights) foot_detection = FootDetection("cpu") # "cuda" for GPU or "mps" for App def detect(img, threshold): results = foot_detection.detect(img, threshold=threshold) img_with_boxes = foot_detection.draw_boxes(img) return img_with_boxes demo = gr.Interface(fn=detect, title='Foot Detection', description="""by [Tony Assi](https://www.tonyassi.com/) A lightweight Python module for detecting feet or shoes in images using a fine-tuned Faster R-CNN model (PyTorch + Torchvision). [![Model](https://img.shields.io/badge/%F0%9F%A4%97-Models-yellow)](https://www.google.com/) hello?""", inputs=[gr.Image(label='Input', type='pil'), gr.Slider(label='Threshold', minimum=0.0, maximum=1.0, value=0.3)], outputs=gr.Image(label='Result', type='pil'), cache_examples=True, examples=[['examples/1.jpg', 0.3], ['examples/2.jpg', 0.3], ['examples/3.jpg', 0.3], ['examples/4.jpg', 0.3], ['examples/5.jpg', 0.3], ['examples/6.jpg', 0.3]]) demo.launch()