tonyassi's picture
Update app.py
a1deaea verified
raw
history blame
2.99 kB
import gradio as gr
from diffusers import AutoPipelineForInpainting, AutoencoderKL
import torch
from PIL import Image, ImageOps
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipeline = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda")
def squarify_image(img):
if(img.height > img.width): bg_size = img.height
else: bg_size = img.width
bg = Image.new(mode="RGB", size=(bg_size,bg_size), color="white")
bg.paste(img, ( int((bg.width - bg.width)/2), 0) )
return bg
def divisible_by_8(image):
width, height = image.size
# Calculate the new width and height that are divisible by 8
new_width = (width // 8) * 8
new_height = (height // 8) * 8
# Resize the image
resized_image = image.resize((new_width, new_height))
return resized_image
def generate(image_editor, prompt, neg_prompt, strength, guidance):
image = image_editor['background'].convert('RGB')
image.thumbnail((1024, 1024))
image = divisible_by_8(image)
image = squarify_image(image)
layer = image_editor["layers"][0].resize(image.size)
layer = squarify_image(layer)
mask = Image.new("RGBA", image.size, "WHITE")
mask.paste(layer, (0, 0), layer)
mask = ImageOps.invert(mask.convert('L'))
final_image = pipeline(prompt=prompt,
image=image,
mask_image=mask).images[0]
#width=image.width,
#height=image.height,
#num_inference_steps=50,
#strength=strength,
#guidance_scale=guidance).images[0]
return image_editor, image, mask, final_image
with gr.Blocks() as demo:
gr.Markdown("""
# Inpainting Sketch Pad
by [Tony Assi](https://www.tonyassi.com/)
""")
with gr.Row():
with gr.Column():
sketch_pad = gr.ImageMask(type='pil', label='Inpaint')
prompt = gr.Textbox()
generate_button = gr.Button("Generate")
with gr.Column():
version_gallery = gr.Gallery(label="Versions")
restore_button = gr.Button("Restore Version")
with gr.Accordion("Advanced Settings", open=False):
neg_prompt = gr.Textbox(label='Negative Prompt', value='ugly, deformed, nsfw')
strength_slider = gr.Slider(0.0, 1.0, value=1.0, label="Strength")
guidance_slider = gr.Slider(1.0, 15.0, value=7.5, label="Guidance")
with gr.Row():
out1 = gr.Image(format='png')
out2 = gr.Image(format='png')
out3 = gr.Image(format='png')
generate_button.click(fn=generate, inputs=[sketch_pad,prompt, neg_prompt, strength_slider, guidance_slider], outputs=[sketch_pad, out1, out2, out3])
demo.launch()