Spaces:
Running
Running
File size: 6,878 Bytes
460f62f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
from PIL import Image
from datasets import load_dataset, Dataset
import random
import numpy as np
import time
#ds = load_dataset("tonyassi/lucy4-embeddings", split='train')
ds = load_dataset("tonyassi/finesse1-embeddings", split='train')
#ds = load_dataset("tonyassi/lucy5-embeddings", split='train')
id_to_row = {row['id']: row for row in ds}
remaining_ds = None
preference_embedding = []
###################################################################################
def get_random_images(dataset, num):
# Select 4 random indices from the dataset
random_indices = random.sample(range(len(dataset)), num)
# Get the 4 random images
random_images = dataset.select(random_indices)
# Create a new dataset with the remaining images
remaining_indices = [i for i in range(len(dataset)) if i not in random_indices]
new_dataset = dataset.select(remaining_indices)
return random_images, new_dataset
"""
def find_similar_images(dataset, num, embedding):
start_time = time.time()
# Find the most similar images in dataset
dataset.add_faiss_index(column='embeddings')
embedding = np.array(embedding)
scores, retrieved_examples = dataset.get_nearest_examples('embeddings', embedding, k=num)
print('time 2.1:', time.time()-start_time)
# Create a new dataset without these images
dataset.drop_index('embeddings')
print('time 2.2:', time.time()-start_time)
remaining_indices = [i for i in range(len(dataset)) if dataset[i]['id'] not in retrieved_examples['id']]
print('time 2.3:', time.time()-start_time)
new_dataset = dataset.select(remaining_indices)
print('time 2.4:', time.time()-start_time)
return retrieved_examples, new_dataset
"""
def find_similar_images(dataset, num, embedding):
start_time = time.time()
# Ensure FAISS index exists and search for similar images
#if not dataset.has_faiss_index('embeddings'):
dataset.add_faiss_index(column='embeddings')
scores, retrieved_examples = dataset.get_nearest_examples('embeddings', np.array(embedding), k=num)
print('time 2.1:', time.time()-start_time)
# Drop FAISS index after use to avoid re-indexing
dataset.drop_index('embeddings')
print('time 2.2:', time.time()-start_time)
# Extract all dataset IDs and use a set to find remaining indices
dataset_ids = dataset['id']
retrieved_ids_set = set(retrieved_examples['id'])
# Use a list comprehension with enumerate for faster indexing
remaining_indices = [i for i, id in enumerate(dataset_ids) if id not in retrieved_ids_set]
print('time 2.3:', time.time()-start_time)
# Create a new dataset without the retrieved images
new_dataset = dataset.select(remaining_indices)
print('time 2.4:', time.time()-start_time)
return retrieved_examples, new_dataset
def average_embedding(embedding1, embedding2):
embedding1 = np.array(embedding1)
embedding2 = np.array(embedding2)
return (embedding1 + embedding2) / 2
###################################################################################
def load_images():
print('load_images()')
print("ds", ds.num_rows)
global remaining_ds
remaining_ds = ds
global preference_embedding
preference_embedding = []
# Get random images
rand_imgs, remaining_ds = get_random_images(ds, 10)
# Create a list of tuples [(img1,caption1),(img2,caption2)...]
result = list(zip(rand_imgs['image'], [str(id) for id in rand_imgs['id']]))
return result
def select_image(evt: gr.SelectData, gallery, preference_gallery):
start_time = time.time()
print('select_image()')
global remaining_ds
print("remaining_ds", remaining_ds.num_rows)
# Selected image
selected_id = int(evt.value['caption'])
print('ID', selected_id)
#selected_row = ds.filter(lambda row: row['id'] == selected_id)[0]
selected_row = id_to_row[selected_id]
selected_embedding = selected_row['embeddings']
selected_image = selected_row['image']
print('time 1:', time.time()-start_time)
# Update preference embedding
global preference_embedding
if len(preference_embedding) == 0:
preference_embedding = selected_embedding
else:
preference_embedding = average_embedding(preference_embedding, selected_embedding)
print('time 2:', time.time()-start_time)
# Find images which are most similar to the preference embedding
simlar_images, remaining_ds = find_similar_images(remaining_ds, 5, preference_embedding)
print('time 3:', time.time()-start_time)
# Create a list of tuples [(img1,caption1),(img2,caption2)...]
result = list(zip(simlar_images['image'], [str(id) for id in simlar_images['id']]))
print('time 4:', time.time()-start_time)
# Get random images
rand_imgs, remaining_ds = get_random_images(remaining_ds, 5)
# Create a list of tuples [(img1,caption1),(img2,caption2)...]
random_result = list(zip(rand_imgs['image'], [str(id) for id in rand_imgs['id']]))
final_result = result + random_result
# Update prefernce gallery
if (preference_gallery==None):
final_preference_gallery = [selected_image]
else:
final_preference_gallery = [selected_image] + preference_gallery
print('time 5:', time.time()-start_time)
return gr.Gallery(value=final_result, selected_index=None), final_preference_gallery
###################################################################################
with gr.Blocks() as demo:
gr.Markdown("""
<center><h1> Product Recommendation using Image Similarity </h1></center>
<center>by <a href="https://www.tonyassi.com/" target="_blank">Tony Assi</a></center>
<center> This is a demo of product recommendation using image similarity of user preferences. </center>
The the user selects their favorite product which then gets added to the user preference group. Each of the image embeddings in the user preference products get averaged into a preference embedding. Each round some products are displayed: 5 products most similar to user preference embedding and 5 random products. Embeddings are generated with [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224). The dataset used is [tonyassi/finesse1-embeddings](https://huggingface.co/datasets/tonyassi/finesse1-embeddings).
""")
product_gallery = gr.Gallery(columns=5, object_fit='contain', allow_preview=False, label='Products')
preference_gallery = gr.Gallery(columns=5, object_fit='contain', allow_preview=False, label='Preference', interactive=False)
demo.load(load_images, inputs=None, outputs=[product_gallery])
product_gallery.select(select_image, inputs=[product_gallery, preference_gallery], outputs=[product_gallery, preference_gallery])
demo.launch() |