import gradio as gr from transformers import pipeline from PIL import Image, ImageOps import time # Initialize Segmentation Pipeline segformer_b2_clothes_pipe = pipeline("image-segmentation", model="mattmdjaga/segformer_b2_clothes") def segformer_b2_clothes(img): result = segformer_b2_clothes_pipe(img) mask = result[0]['mask'].convert('L') mask = ImageOps.invert(mask) img.putalpha(mask) return img def remove_background(img): start = time.time() segformer_b2_clothes_result = segformer_b2_clothes(img) end = time.time() segformer_b2_clothes_text = "[mattmdjaga/segformer_b2_clothes](https://huggingface.co/mattmdjaga/segformer_b2_clothes) in " + str(end-start) + " seconds" return segformer_b2_clothes_text, segformer_b2_clothes_result iface = gr.Interface(fn=remove_background, inputs=gr.Image(type='pil'), outputs=[gr.Markdown(), gr.Image(label='segformer_b2_clothes', type='pil')]) iface.launch()