File size: 14,554 Bytes
f7b19d2
7c57779
fb03baa
 
9bfcf61
fb03baa
 
a6c8143
 
 
 
 
f7b19d2
a6c8143
f7b19d2
 
 
fb03baa
 
d4419d5
 
 
9e34a62
9bfcf61
9e34a62
 
 
9bfcf61
 
9e34a62
 
 
f7b19d2
 
 
9e34a62
7c57779
9e34a62
 
 
 
 
 
6eaecb2
9e34a62
 
 
9bfcf61
 
 
 
 
 
e9585f6
9bfcf61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e34a62
 
 
e9585f6
 
 
 
 
 
 
 
 
73701f9
9bfcf61
e9585f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e34a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bfcf61
 
 
9e34a62
 
9bfcf61
 
 
 
 
 
 
 
9e34a62
 
9bfcf61
 
 
 
 
 
9e34a62
 
 
9bfcf61
 
 
9e34a62
9bfcf61
9e34a62
 
9bfcf61
9e34a62
 
 
 
9bfcf61
9e34a62
e9585f6
9bfcf61
9e34a62
 
 
 
 
 
 
 
 
9bfcf61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
debf4ec
9bfcf61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e34a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bfcf61
 
 
 
 
9e34a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9585f6
9e34a62
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

import os
import subprocess
import sys


def install(package):
    if '=' in package:
        package_name, package_version = package.split('==')
    else:
        package_name = package
        package_version = None
    try:
        subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "-y", package_name])
        print(f"Successfully uninstalled {package}")
    except subprocess.CalledProcessError:
        print(f"Package {package} was not installed, proceeding with installation")
    subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# install('pydantic==2.0.0')
# install('gradio==4.44.0')
# install('spacy==3.7')

debug = False
is_prod = True
if os.environ.get('PROD_MODE') == 'local':
    is_prod = False
else:
    debug = False

import pickle

import gradio as gr
import os

if not is_prod:

    import os
    os.environ['HF_HOME'] = '/proj/afosr/metavoice/cache'
    os.environ['TRANSFORMERS_CACHE'] = '/proj/afosr/metavoice/cache'
    os.environ['HF_DATASETS_CACHE'] = '/proj/afosr/metavoice/cache'
    os.environ['HF_METRICS_CACHE'] = '/proj/afosr/metavoice/cache'
    os.environ['HF_MODULES_CACHE'] = '/proj/afosr/metavoice/cache'
    ffmpeg_path = '/home/hc3295/ffmpegg_build/bin'
    os.environ['PATH'] += os.pathsep + ffmpeg_path


import torch
if not debug:
    import shutil
    import tempfile
    import time
    from pathlib import Path

    import librosa
    
    from huggingface_hub import snapshot_download

    from fam.llm.adapters import FlattenedInterleavedEncodec2Codebook
    from fam.llm.decoders import EncodecDecoder
    from fam.llm.fast_inference_utils import build_model, main
    from fam.llm.inference import (
        EncodecDecoder,
        InferenceConfig,
        Model,
        TiltedEncodec,
        TrainedBPETokeniser,
        get_cached_embedding,
        get_cached_file,    
        get_enhancer,
    )
    from fam.llm.utils import (
        check_audio_file,
        get_default_dtype,
        get_device,
        normalize_text,
    )



DESCRIPTION = ""
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
    if not debug:
        model_name = "metavoiceio/metavoice-1B-v0.1"
        seed = 1337
        output_dir = "outputs"
        _dtype = get_default_dtype()
        _device = 'cuda:0'

        _model_dir = snapshot_download(repo_id=model_name)
        first_stage_adapter = FlattenedInterleavedEncodec2Codebook(end_of_audio_token=1024)
        output_dir = output_dir
        os.makedirs(output_dir, exist_ok=True)

        second_stage_ckpt_path = f"{_model_dir}/second_stage.pt"
        config_second_stage = InferenceConfig(
            ckpt_path=second_stage_ckpt_path,
            num_samples=1,
            seed=seed,
            device=_device,
            dtype=_dtype,
            compile=False,
            init_from="resume",
            output_dir=output_dir,
        )
        data_adapter_second_stage = TiltedEncodec(end_of_audio_token=1024)
        llm_second_stage = Model(
            config_second_stage, TrainedBPETokeniser, EncodecDecoder, data_adapter_fn=data_adapter_second_stage.decode
        )
        enhancer = get_enhancer("df")

        precision = {"float16": torch.float16, "bfloat16": torch.bfloat16}[_dtype]
        model, tokenizer, smodel, model_size = build_model(
            precision=precision,
            checkpoint_path=Path(f"{_model_dir}/first_stage.pt"),
            spk_emb_ckpt_path=Path(f"{_model_dir}/speaker_encoder.pt"),
            device=_device,
            compile=True,
            compile_prefill=True,
        )

def generate_sample(text, emo_dir = None, source_path = None, emo_path = None, neutral_path = None, strength = 0.1, top_p = 0.95, guidance_scale = 3.0, preset_dropdown = None, toggle = None):

    print('text', text)
    print('emo_dir', emo_dir)
    print('source_path', source_path)
    print('emo_path', emo_path)
    print('neutral_path', neutral_path)
    print('strength', strength)
    print('top_p', top_p)
    print('guidance_scale', guidance_scale)

    if toggle == RADIO_CHOICES[0]:
        source_path = PRESET_VOICES[preset_dropdown]
    source_path = get_cached_file(source_path)
    check_audio_file(source_path)
    source_emb = get_cached_embedding(source_path, smodel).to(device=_device, dtype=precision)

    if emo_dir == EMO_NAMES[0]:
        emo_path = get_cached_file(emo_path)
        check_audio_file(emo_path)
        emo_emb = get_cached_embedding(emo_path, smodel).to(device=_device, dtype=precision)

        neutral_path = get_cached_file(neutral_path)
        check_audio_file(neutral_path)
        neutral_emb = get_cached_embedding(neutral_path, smodel).to(device=_device, dtype=precision)

        emo_dir = emo_emb - neutral_emb
        emo_dir = emo_dir / torch.norm(emo_dir, p=2)
    else:
        emo_dir = torch.tensor(ALL_EMO_DIRS[emo_dir], device=_device, dtype=precision)
    
    
    edited_emb = source_emb + strength * emo_dir
    edited_emb = edited_emb.to(device=_device, dtype=precision)

    temperature=1.0
    text = normalize_text(text)

    start = time.time()
    # first stage LLM
    tokens = main(
        model=model,
        tokenizer=tokenizer,
        model_size=model_size,
        prompt=text,
        spk_emb=edited_emb,
        top_p=torch.tensor(top_p, device=_device, dtype=precision),
        guidance_scale=torch.tensor(guidance_scale, device=_device, dtype=precision),
        temperature=torch.tensor(temperature, device=_device, dtype=precision),
    )
    text_ids, extracted_audio_ids = first_stage_adapter.decode([tokens])

    b_speaker_embs = edited_emb.unsqueeze(0)

    # second stage LLM + multi-band diffusion model
    wav_files = llm_second_stage(
        texts=[text],
        encodec_tokens=[torch.tensor(extracted_audio_ids, dtype=torch.int32, device=_device).unsqueeze(0)],
        speaker_embs=b_speaker_embs,
        batch_size=1,
        guidance_scale=None,
        top_p=None,
        top_k=200,
        temperature=1.0,
        max_new_tokens=None,
    )

    wav_file = wav_files[0]
    with tempfile.NamedTemporaryFile(suffix=".wav") as enhanced_tmp:
        enhancer(str(wav_file) + ".wav", enhanced_tmp.name)
        shutil.copy2(enhanced_tmp.name, str(wav_file) + ".wav")
        print(f"\nSaved audio to {wav_file}.wav")
    
    output_path = str(wav_file) + ".wav"
    return output_path


ALL_EMO_DIRS = pickle.load(open('all_emo_dirs.pkl', 'rb'))
EMO_NAMES = ['Upload your own sample'] + list(ALL_EMO_DIRS.keys())

RADIO_CHOICES = ["Preset voices", "Upload your voice"]
MAX_CHARS = 220
PRESET_VOICES = {
    # female
    "Bria": "https://cdn.themetavoice.xyz/speakers%2Fbria.mp3",
    # male
    "Alex": "https://cdn.themetavoice.xyz/speakers/alex.mp3",
    "Jacob": "https://cdn.themetavoice.xyz/speakers/jacob.wav",
}


def denormalise_top_p(top_p):
    # returns top_p in the range [0.9, 1.0]
    return round(0.9 + top_p / 100, 2)


def denormalise_guidance(guidance):
    # returns guidance in the range [1.0, 3.0]
    return 1 + ((guidance - 1) * (3 - 1)) / (5 - 1)


def _check_file_size(path):
    if not path:
        return
    filesize = os.path.getsize(path)
    filesize_mb = filesize / 1024 / 1024
    if filesize_mb >= 50:
        raise gr.Error(f"Please upload a sample less than 20MB for voice cloning. Provided: {round(filesize_mb)} MB")


def _handle_edge_cases(to_say, upload_target):
    if not to_say:
        raise gr.Error("Please provide text to synthesise")

    if len(to_say) > MAX_CHARS:
        gr.Warning(
            f"Max {MAX_CHARS} characters allowed. Provided: {len(to_say)} characters. Truncating and generating speech...Result at the end can be unstable as a result."
        )

    if not upload_target:
        return

    check_audio_file(upload_target)  # check file duration to be atleast 30s
    _check_file_size(upload_target)


def tts(to_say, top_p, guidance, toggle, preset_dropdown, upload_target):
    try:
        d_top_p = denormalise_top_p(top_p)
        d_guidance = denormalise_guidance(guidance)

        _handle_edge_cases(to_say, upload_target)

        to_say = to_say if len(to_say) < MAX_CHARS else to_say[:MAX_CHARS]

        return TTS_MODEL.synthesise(
            text=to_say,
            spk_ref_path=PRESET_VOICES[preset_dropdown] if toggle == RADIO_CHOICES[0] else upload_target,
            top_p=d_top_p,
            guidance_scale=d_guidance,
        )
    except Exception as e:
        raise gr.Error(f"Something went wrong. Reason: {str(e)}")


def change_voice_selection_layout(choice):
    if choice == RADIO_CHOICES[0]:
        return [gr.update(visible=True), gr.update(visible=False)]

    return [gr.update(visible=False), gr.update(visible=True)]

def change_emotion_selection_layout(choice):
    if choice == EMO_NAMES[0]:
        return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)]
    else:
        return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)]

title = """
<!-- Google Tag Manager -->
<script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':
new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src=
'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);
})(window,document,'script','dataLayer','GTM-5N27BQH8');</script>
<!-- End Google Tag Manager -->

</style>
<h1 style="margin-top: 10px;" class="page-title">Demo for <span style="margin-left: 10px;background-color: #E0FEE4;padding: 15px;border-radius: 10px;">🎛️ EmoKnob</span></h1>

<!-- Google Tag Manager (noscript) -->
<noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5N27BQH8"
height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript>
<!-- End Google Tag Manager (noscript) -->

"""

description = """

- EmoKnob applies control of emotion over arbitrary speaker.
- EmoKnob <b>extracts emotion from a pair of emotional and neutral audio from the same speaker.</b>
- In this demo, you can select from a few preset voices and upload your own emotional samples to clone.
- You can then apply control of a preset emotion or extract emotion from your own pair of emotional and neutral audio.
- You can adjust the strength of the emotion by using the slider.

Check out our [project page](https://emoknob.cs.columbia.edu/) for more details.

EmoKnob is uses [MetaVoice](https://github.com/metavoiceio/metavoice-src) as voice cloning backbone.
"""

with gr.Blocks(title="EmoKnob: EmoKnob: Enhance Voice Cloning with Fine-Grained Emotion Control") as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Image("https://raw.githubusercontent.com/tonychenxyz/emoknob/main/docs/assets/emo-knob-teaser-1.svg", show_label=False, container=False)

    with gr.Row():
        with gr.Column():
            to_say = gr.TextArea(
                label=f"What should I say!? (max {MAX_CHARS} characters).",
                lines=4,
                value="To be or not to be, that is the question.",
            )



                # voice select
                
            with gr.Row(), gr.Column():
                toggle = gr.Radio(choices=RADIO_CHOICES, label="Choose voice", value=RADIO_CHOICES[0])
                

                with gr.Row() as row_1:
                    preset_dropdown = gr.Dropdown(
                        PRESET_VOICES.keys(), label="Preset voices", value=list(PRESET_VOICES.keys())[0]
                    )

                    with gr.Accordion("Preview: Preset voices", open=False):
                        for label, path in PRESET_VOICES.items():
                            gr.Audio(value=path, label=label)

                with gr.Row(visible=False) as row_2:
                    upload_target = gr.Audio(
                        sources=["upload"],
                        type="filepath",
                        label="Upload a clean sample to clone.",
                    )

                    
            with gr.Row(), gr.Column():
                strength = gr.Slider(
                        value=0.3,
                        minimum=0.0,
                        maximum=1.0,
                        step=0.01,
                        label="Strength - how strong the emotion is. Recommended value is between 0.0 and 0.6.",
                    )
                
                with gr.Row():
                    emotion_name = gr.Radio(choices=EMO_NAMES, label="Emotion", value=EMO_NAMES[1])  # Set default to second option



                with gr.Row(visible=False) as row_3:
                    upload_neutral = gr.Audio(
                        sources=["upload"],
                        type="filepath",
                        label="Neutral sample for emotion extraction.",
                    )

                    upload_emo = gr.Audio(
                        sources=["upload"],
                        type="filepath",
                        label="Emotional sample for emotion extraction.",
                    )

            with gr.Row(), gr.Column():
                # voice settings
                top_p = gr.Slider(
                    value=0.95,
                    minimum=0.0,
                    maximum=10.0,
                    step=1.0,
                    label="Speech Stability - improves text following for a challenging speaker",
                )
                guidance = gr.Slider(
                    value=3.0,
                    minimum=1.0,
                    maximum=5.0,
                    step=1.0,
                    label="Speaker similarity - How closely to match speaker identity and speech style.",
                )

            emotion_name.change(
                change_emotion_selection_layout,
                inputs=emotion_name,
                outputs=[row_3, upload_neutral, upload_emo],
            )

            toggle.change(
                change_voice_selection_layout,
                inputs=toggle,
                outputs=[row_1, row_2],
            )

        with gr.Column():
            speech = gr.Audio(
                type="filepath",
                label="Model says...",
            )

    submit = gr.Button("Generate Speech")
    submit.click(
        fn=generate_sample,
        inputs=[to_say, emotion_name, upload_target, upload_emo, upload_neutral, strength, top_p, guidance, preset_dropdown, toggle],
        outputs=speech,
    )


demo.launch()