Spaces:
Sleeping
Sleeping
File size: 15,419 Bytes
9e34a62 abbdb85 9e34a62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# Copyright (c) MetaVoice Labs Inc., Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this
# list of conditions and the following disclaimer in the documentation and/or other
# materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import itertools
import time
from pathlib import Path
from typing import Optional, Tuple
import torch
import torch._dynamo.config
import torch._inductor.config
import tqdm
def device_sync(device):
if "cuda" in device:
torch.cuda.synchronize()
elif "cpu" in device:
pass
else:
print(f"device={device} is not yet suppported")
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
# torch._inductor.config.fx_graph_cache = (
# True # Experimental feature to reduce compilation times, will be on by default in future
# )
# imports need to happen after setting above flags
from fam.llm.fast_model import Transformer
from fam.quantiser.audio.speaker_encoder.model import SpeakerEncoder
from fam.quantiser.text.tokenise import TrainedBPETokeniser
def multinomial_sample_one_no_sync(
probs_sort,
): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def top_p_sample(logits: torch.Tensor, top_p: torch.Tensor):
# ref: huggingface/transformers
sorted_logits, sorted_indices = torch.sort(logits, descending=False)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[-1:] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(0, sorted_indices, sorted_indices_to_remove)
scores = logits.masked_fill(indices_to_remove, -float("Inf"))
return scores
def logits_to_probs(
logits,
*,
temperature: torch.Tensor,
top_p: Optional[torch.Tensor] = None,
top_k: Optional[torch.Tensor] = None,
):
logits = logits / torch.max(temperature, 1e-5 * torch.ones_like(temperature))
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
if top_p is not None:
logits = top_p_sample(logits, top_p)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(
logits,
guidance_scale: torch.Tensor,
temperature: torch.Tensor,
top_p: Optional[torch.Tensor] = None,
top_k: Optional[torch.Tensor] = None,
):
# (b, t, vocab_size)
logits = logits[:, -1]
logits_cond, logits_uncond_spkemb = logits.split(logits.size(0) // 2, dim=0)
logits = guidance_scale * logits_cond + (1 - guidance_scale) * logits_uncond_spkemb
probs = logits_to_probs(logits[0], temperature=temperature, top_p=top_p, top_k=top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def prefill(
model: Transformer,
x: torch.Tensor,
spk_emb: torch.Tensor,
input_pos: torch.Tensor,
**sampling_kwargs,
) -> torch.Tensor:
# input_pos: [B, S]
logits = model(x, spk_emb, input_pos)
return sample(logits, **sampling_kwargs)[0]
def decode_one_token(
model: Transformer,
x: torch.Tensor,
spk_emb: torch.Tensor,
input_pos: torch.Tensor,
**sampling_kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
# input_pos: [B, 1]
assert input_pos.shape[-1] == 1
logits = model(x, spk_emb, input_pos)
return sample(logits, **sampling_kwargs)
def decode_n_tokens(
model: Transformer,
cur_token: torch.Tensor,
spk_emb: torch.Tensor,
input_pos: torch.Tensor,
num_new_tokens: int,
callback=lambda _: _,
return_probs: bool = False,
end_of_audio_token: int = 2048,
**sampling_kwargs,
):
new_tokens, new_probs = [], []
for i in tqdm.tqdm(range(num_new_tokens)):
if (cur_token == end_of_audio_token).any():
break
with torch.backends.cuda.sdp_kernel(
enable_flash=False, enable_mem_efficient=False, enable_math=True
): # Actually better for Inductor to codegen attention here
next_token, next_prob = decode_one_token(model, cur_token, spk_emb, input_pos, **sampling_kwargs)
input_pos += 1
new_tokens.append(next_token.clone())
callback(new_tokens[-1])
if return_probs:
new_probs.append(next_prob.clone())
cur_token = next_token.view(1, -1).repeat(2, 1)
return new_tokens, new_probs
def model_forward(model, x, spk_emb, input_pos):
return model(x, spk_emb, input_pos)
@torch.no_grad()
def generate(
model: Transformer,
prompt: torch.Tensor,
spk_emb: torch.Tensor,
*,
max_new_tokens: Optional[int] = None,
callback=lambda x: x,
end_of_audio_token: int = 2048,
**sampling_kwargs,
) -> torch.Tensor:
"""
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
"""
# create an empty tensor of the expected final shape and fill in the current tokens
T = prompt.size(0)
if max_new_tokens is None:
max_seq_length = model.config.block_size
else:
max_seq_length = T + max_new_tokens
max_seq_length = min(max_seq_length, model.config.block_size)
max_new_tokens = max_seq_length - T
if max_new_tokens <= 0:
raise ValueError("Prompt is too long to generate more tokens")
device, dtype = prompt.device, prompt.dtype
seq = torch.clone(prompt)
input_pos = torch.arange(0, T, device=device)
next_token = prefill(model, prompt.view(1, -1).repeat(2, 1), spk_emb, input_pos, **sampling_kwargs)
seq = torch.cat([seq, next_token.view(1)])
input_pos = torch.tensor([T], device=device, dtype=torch.int)
generated_tokens, _ = decode_n_tokens(
model,
next_token.view(1, -1).repeat(2, 1),
spk_emb,
input_pos,
max_new_tokens - 1,
callback=callback,
end_of_audio_token=end_of_audio_token,
**sampling_kwargs,
)
seq = torch.cat([seq, torch.cat(generated_tokens)])
return seq
def encode_tokens(tokenizer, string, device="cuda"):
tokens = tokenizer.encode(string)
return torch.tensor(tokens, dtype=torch.int, device=device)
def _load_model(checkpoint_path, spk_emb_ckpt_path, device, precision):
##### MODEL
with torch.device("meta"):
model = Transformer.from_name("metavoice-1B")
# TODO(quantization): enable
# if "int8" in str(checkpoint_path):
# print("Using int8 weight-only quantization!")
# from quantize import WeightOnlyInt8QuantHandler
# simple_quantizer = WeightOnlyInt8QuantHandler(model)
# model = simple_quantizer.convert_for_runtime()
# from quantize import WeightOnlyInt8QuantHandler
# if "int4" in str(checkpoint_path):
# print("Using int4 quantization!")
# path_comps = checkpoint_path.name.split(".")
# assert path_comps[-2].startswith("g")
# groupsize = int(path_comps[-2][1:])
# from quantize import WeightOnlyInt4QuantHandler
# simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
# model = simple_quantizer.convert_for_runtime()
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=False)
state_dict = checkpoint["model"]
# convert MetaVoice-1B model weights naming to gptfast naming
unwanted_prefix = "_orig_mod."
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
state_dict["tok_embeddings.weight"] = state_dict.pop("transformer.wtes.0.weight")
state_dict["pos_embeddings.weight"] = state_dict.pop("transformer.wpe.weight")
state_dict["output.weight"] = state_dict.pop("lm_heads.0.weight")
state_dict["norm.weight"] = state_dict.pop("transformer.ln_f.weight")
for k, v in list(state_dict.items()):
if k.startswith("transformer.h."):
state_dict[k.replace("transformer.h.", "layers.")] = state_dict.pop(k)
k = k.replace("transformer.h.", "layers.")
if ".attn.c_attn." in k:
state_dict[k.replace(".attn.c_attn.", ".attention.wqkv.")] = state_dict.pop(k)
k = k.replace(".attn.c_attn.", ".attention.wqkv.")
if ".attn.c_proj." in k:
state_dict[k.replace(".attn.c_proj.", ".attention.wo.")] = state_dict.pop(k)
k = k.replace(".attn.c_proj.", ".attention.wo.")
if ".mlp.swiglu.w1." in k:
state_dict[k.replace(".mlp.swiglu.w1.", ".feed_forward.swiglu.w1.")] = state_dict.pop(k)
k = k.replace(".mlp.swiglu.w1.", ".feed_forward.swiglu.w1.")
if ".mlp.swiglu.w3." in k:
state_dict[k.replace(".mlp.swiglu.w3.", ".feed_forward.swiglu.w3.")] = state_dict.pop(k)
k = k.replace(".mlp.swiglu.w3.", ".feed_forward.swiglu.w3.")
if ".ln_1." in k:
state_dict[k.replace(".ln_1.", ".attention_norm.")] = state_dict.pop(k)
k = k.replace(".ln_1.", ".attention_norm.")
if ".ln_2." in k:
state_dict[k.replace(".ln_2.", ".ffn_norm.")] = state_dict.pop(k)
k = k.replace(".ln_2.", ".ffn_norm.")
if ".mlp.c_proj." in k:
state_dict[k.replace(".mlp.c_proj.", ".feed_forward.w2.")] = state_dict.pop(k)
k = k.replace(".mlp.c_proj.", ".feed_forward.w2.")
model.load_state_dict(state_dict, assign=True)
# simple_quantizer = WeightOnlyInt8QuantHandler(model)
# quantized_state_dict = simple_quantizer.create_quantized_state_dict()
# model = simple_quantizer.convert_for_runtime()
# model.load_state_dict(quantized_state_dict, assign=True)
model = model.to(device=device, dtype=precision)
###### TOKENIZER
tokenizer_info = checkpoint.get("meta", {}).get("tokenizer", {})
tokenizer = TrainedBPETokeniser(**tokenizer_info)
###### SPEAKER EMBEDDER
# TODO: fix!
smodel = SpeakerEncoder(
weights_fpath=spk_emb_ckpt_path,
device=device,
eval=True,
verbose=False,
)
return model.eval(), tokenizer, smodel
def build_model(
*,
precision: torch.dtype,
checkpoint_path: Path = Path(""),
spk_emb_ckpt_path: Path = Path(""),
compile_prefill: bool = False,
compile: bool = True,
device: str = "cuda",
):
assert checkpoint_path.is_file(), checkpoint_path
print(f"Using device={device}")
print("Loading model ...")
t0 = time.time()
model, tokenizer, smodel = _load_model(checkpoint_path, spk_emb_ckpt_path, device, precision)
device_sync(device=device) # MKG
print(f"Time to load model: {time.time() - t0:.02f} seconds")
torch.manual_seed(1234)
model_size = sum([p.numel() * p.dtype.itemsize for p in itertools.chain(model.parameters(), model.buffers())])
with torch.device(device):
model.setup_spk_cond_mask()
model.setup_caches(max_batch_size=2, max_seq_length=model.config.block_size)
if compile:
print("Compiling...Can take up to 2 mins.")
global decode_one_token, prefill
decode_one_token = torch.compile(
decode_one_token,
mode="max-autotune",
fullgraph=True,
)
if compile_prefill:
prefill = torch.compile(
prefill,
fullgraph=True,
dynamic=True,
)
encoded = encode_tokens(tokenizer, "Hello, what's up?", device=device)
spk_emb = torch.randn((1, 256), device=device, dtype=precision)
device_sync(device=device) # MKG
t0 = time.perf_counter()
y = generate(
model,
encoded,
spk_emb,
max_new_tokens=200,
callback=lambda x: x,
temperature=torch.tensor(1.0, device=device, dtype=precision),
top_k=None,
top_p=torch.tensor(0.95, device=device, dtype=precision),
guidance_scale=torch.tensor(3.0, device=device, dtype=precision),
end_of_audio_token=9999, # don't end early for compilation stage.
)
device_sync(device=device) # MKG
print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
return model, tokenizer, smodel, model_size
def main(
*,
model,
tokenizer,
model_size,
prompt: str,
guidance_scale: torch.Tensor,
temperature: torch.Tensor,
spk_emb: torch.Tensor,
top_k: Optional[torch.Tensor] = None,
top_p: Optional[torch.Tensor] = None,
device: str = "cuda",
) -> list:
"""Generates text samples based on a pre-trained Transformer model and tokenizer."""
encoded = encode_tokens(tokenizer, prompt, device=device)
prompt_length = encoded.size(0)
aggregate_metrics: dict = {
"tokens_per_sec": [],
}
device_sync(device=device) # MKG
if True:
callback = lambda x: x
t0 = time.perf_counter()
y = generate(
model,
encoded,
spk_emb,
callback=callback,
temperature=temperature,
top_k=top_k,
top_p=top_p,
guidance_scale=guidance_scale,
)
device_sync(device=device) # MKG
t = time.perf_counter() - t0
tokens_generated = y.size(0) - prompt_length
tokens_sec = tokens_generated / t
aggregate_metrics["tokens_per_sec"].append(tokens_sec)
print(f"Time for 1st stage LLM inference: {t:.02f} sec total, {tokens_sec:.02f} tokens/sec")
print(f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s")
# print(f"Average tokens/sec: {torch.mean(torch.tensor(aggregate_metrics['tokens_per_sec'])).item():.2f}")
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB\n")
return y.tolist()
|