File size: 12,308 Bytes
9e34a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import gradio as gr
import os


is_prod = True
if os.environ.get('PROD_MODE') == 'local':
    is_prod = False

import pickle

if not is_prod:
    import os
    os.environ['HF_HOME'] = '/proj/afosr/metavoice/cache'
    os.environ['TRANSFORMERS_CACHE'] = '/proj/afosr/metavoice/cache'
    os.environ['HF_DATASETS_CACHE'] = '/proj/afosr/metavoice/cache'
    os.environ['HF_METRICS_CACHE'] = '/proj/afosr/metavoice/cache'
    os.environ['HF_MODULES_CACHE'] = '/proj/afosr/metavoice/cache'
    ffmpeg_path = '/home/hc3295/ffmpeg_build/bin'
    os.environ['PATH'] += os.pathsep + ffmpeg_path


import shutil
import tempfile
import time
from pathlib import Path

import librosa
import torch
from huggingface_hub import snapshot_download

from fam.llm.adapters import FlattenedInterleavedEncodec2Codebook
from fam.llm.decoders import EncodecDecoder
from fam.llm.fast_inference_utils import build_model, main
from fam.llm.inference import (
    EncodecDecoder,
    InferenceConfig,
    Model,
    TiltedEncodec,
    TrainedBPETokeniser,
    get_cached_embedding,
    get_cached_file,    
    get_enhancer,
)
from fam.llm.utils import (
    check_audio_file,
    get_default_dtype,
    get_device,
    normalize_text,
)

debug = False
if not debug:
    model_name = "metavoiceio/metavoice-1B-v0.1"
    seed = 1337
    output_dir = "outputs"
    _dtype = get_default_dtype()
    _device = 'cuda:0'
    _model_dir = snapshot_download(repo_id=model_name)
    first_stage_adapter = FlattenedInterleavedEncodec2Codebook(end_of_audio_token=1024)
    output_dir = output_dir
    os.makedirs(output_dir, exist_ok=True)

    second_stage_ckpt_path = f"{_model_dir}/second_stage.pt"
    config_second_stage = InferenceConfig(
        ckpt_path=second_stage_ckpt_path,
        num_samples=1,
        seed=seed,
        device=_device,
        dtype=_dtype,
        compile=False,
        init_from="resume",
        output_dir=output_dir,
    )
    data_adapter_second_stage = TiltedEncodec(end_of_audio_token=1024)
    llm_second_stage = Model(
        config_second_stage, TrainedBPETokeniser, EncodecDecoder, data_adapter_fn=data_adapter_second_stage.decode
    )
    enhancer = get_enhancer("df")

    precision = {"float16": torch.float16, "bfloat16": torch.bfloat16}[_dtype]
    model, tokenizer, smodel, model_size = build_model(
        precision=precision,
        checkpoint_path=Path(f"{_model_dir}/first_stage.pt"),
        spk_emb_ckpt_path=Path(f"{_model_dir}/speaker_encoder.pt"),
        device=_device,
        compile=True,
        compile_prefill=True,
    )


def generate_sample(text, emo_dir = None, source_path = None, emo_path = None, neutral_path = None, strength = 0.1, top_p = 0.95, guidance_scale = 3.0, preset_dropdown = None, toggle = None):

    print('text', text)
    print('emo_dir', emo_dir)
    print('source_path', source_path)
    print('emo_path', emo_path)
    print('neutral_path', neutral_path)
    print('strength', strength)
    print('top_p', top_p)
    print('guidance_scale', guidance_scale)

    if toggle == RADIO_CHOICES[0]:
        source_path = PRESET_VOICES[preset_dropdown]
    source_path = get_cached_file(source_path)
    check_audio_file(source_path)
    source_emb = get_cached_embedding(source_path, smodel).to(device=_device, dtype=precision)

    if emo_dir == EMO_NAMES[0]:
        emo_path = get_cached_file(emo_path)
        check_audio_file(emo_path)
        emo_emb = get_cached_embedding(emo_path, smodel).to(device=_device, dtype=precision)

        neutral_path = get_cached_file(neutral_path)
        check_audio_file(neutral_path)
        neutral_emb = get_cached_embedding(neutral_path, smodel).to(device=_device, dtype=precision)

        emo_dir = emo_emb - neutral_emb
        emo_dir = emo_dir / torch.norm(emo_dir, p=2)
    else:
        emo_dir = torch.tensor(ALL_EMO_DIRS[emo_dir], device=_device, dtype=precision)
    
    
    edited_emb = source_emb + strength * emo_dir
    edited_emb = edited_emb.to(device=_device, dtype=precision)

    temperature=1.0
    text = normalize_text(text)

    start = time.time()
    # first stage LLM
    tokens = main(
        model=model,
        tokenizer=tokenizer,
        model_size=model_size,
        prompt=text,
        spk_emb=edited_emb,
        top_p=torch.tensor(top_p, device=_device, dtype=precision),
        guidance_scale=torch.tensor(guidance_scale, device=_device, dtype=precision),
        temperature=torch.tensor(temperature, device=_device, dtype=precision),
    )
    text_ids, extracted_audio_ids = first_stage_adapter.decode([tokens])

    b_speaker_embs = edited_emb.unsqueeze(0)

    # second stage LLM + multi-band diffusion model
    wav_files = llm_second_stage(
        texts=[text],
        encodec_tokens=[torch.tensor(extracted_audio_ids, dtype=torch.int32, device=_device).unsqueeze(0)],
        speaker_embs=b_speaker_embs,
        batch_size=1,
        guidance_scale=None,
        top_p=None,
        top_k=200,
        temperature=1.0,
        max_new_tokens=None,
    )

    wav_file = wav_files[0]
    with tempfile.NamedTemporaryFile(suffix=".wav") as enhanced_tmp:
        enhancer(str(wav_file) + ".wav", enhanced_tmp.name)
        shutil.copy2(enhanced_tmp.name, str(wav_file) + ".wav")
        print(f"\nSaved audio to {wav_file}.wav")
    
    output_path = str(wav_file) + ".wav"
    return output_path


ALL_EMO_DIRS = pickle.load(open('all_emo_dirs.pkl', 'rb'))
EMO_NAMES = ['Upload your own sample'] + list(ALL_EMO_DIRS.keys())

RADIO_CHOICES = ["Preset voices", "Upload your voice"]
MAX_CHARS = 220
PRESET_VOICES = {
    # female
    "Bria": "https://cdn.themetavoice.xyz/speakers%2Fbria.mp3",
    # male
    "Alex": "https://cdn.themetavoice.xyz/speakers/alex.mp3",
    "Jacob": "https://cdn.themetavoice.xyz/speakers/jacob.wav",
}


def denormalise_top_p(top_p):
    # returns top_p in the range [0.9, 1.0]
    return round(0.9 + top_p / 100, 2)


def denormalise_guidance(guidance):
    # returns guidance in the range [1.0, 3.0]
    return 1 + ((guidance - 1) * (3 - 1)) / (5 - 1)


def _check_file_size(path):
    if not path:
        return
    filesize = os.path.getsize(path)
    filesize_mb = filesize / 1024 / 1024
    if filesize_mb >= 50:
        raise gr.Error(f"Please upload a sample less than 20MB for voice cloning. Provided: {round(filesize_mb)} MB")


def _handle_edge_cases(to_say, upload_target):
    if not to_say:
        raise gr.Error("Please provide text to synthesise")

    if len(to_say) > MAX_CHARS:
        gr.Warning(
            f"Max {MAX_CHARS} characters allowed. Provided: {len(to_say)} characters. Truncating and generating speech...Result at the end can be unstable as a result."
        )

    if not upload_target:
        return

    check_audio_file(upload_target)  # check file duration to be atleast 30s
    _check_file_size(upload_target)


def tts(to_say, top_p, guidance, toggle, preset_dropdown, upload_target):
    try:
        d_top_p = denormalise_top_p(top_p)
        d_guidance = denormalise_guidance(guidance)

        _handle_edge_cases(to_say, upload_target)

        to_say = to_say if len(to_say) < MAX_CHARS else to_say[:MAX_CHARS]

        return TTS_MODEL.synthesise(
            text=to_say,
            spk_ref_path=PRESET_VOICES[preset_dropdown] if toggle == RADIO_CHOICES[0] else upload_target,
            top_p=d_top_p,
            guidance_scale=d_guidance,
        )
    except Exception as e:
        raise gr.Error(f"Something went wrong. Reason: {str(e)}")


def change_voice_selection_layout(choice):
    if choice == RADIO_CHOICES[0]:
        return [gr.update(visible=True), gr.update(visible=False)]

    return [gr.update(visible=False), gr.update(visible=True)]

def change_emotion_selection_layout(choice):
    if choice == EMO_NAMES[0]:
        return [gr.update(visible=True)]

    return [gr.update(visible=False)]

title = """
</style>
<h1 style="margin-top: 10px;" class="page-title">Demo for <span style="margin-left: 10px;background-color: #E0FEE4;padding: 15px;border-radius: 10px;">🎛️ EmoKnob</span></h1>
"""

description = """
- While existing TTS services do not allow fine-grained control over emotions, EmoKnob allows users to control emotion in speech with few-shot samples.
- In this demo, you can select from a few preset voices and upload your own emotional samples to clone.
- You can then use preset emotion or upload your own emotional-neutral sample pair to control emotions.
- You can adjust the strength of the emotion by using the slider.


EmoKnob is uses [MetaVoice](https://github.com/metavoiceio/metavoice-src) as voice cloning backbone.
"""

with gr.Blocks(title="EmoKnob Demo") as demo:
    gr.Markdown(title)
    gr.Image("emo-knob-teaser-1.svg", show_label=False, container=False)

    with gr.Row():
        gr.Markdown(description)

    with gr.Row():
        with gr.Column():
            to_say = gr.TextArea(
                label=f"What should I say!? (max {MAX_CHARS} characters).",
                lines=4,
                value="To be or not to be, that is the question.",
            )

            

            with gr.Row(), gr.Column():
                # voice settings
                top_p = gr.Slider(
                    value=0.95,
                    minimum=0.0,
                    maximum=10.0,
                    step=1.0,
                    label="Speech Stability - improves text following for a challenging speaker",
                )
                guidance = gr.Slider(
                    value=3.0,
                    minimum=1.0,
                    maximum=5.0,
                    step=1.0,
                    label="Speaker similarity - How closely to match speaker identity and speech style.",
                )

                strength = gr.Slider(
                    value=0.1,
                    minimum=0.0,
                    maximum=5.0,
                    step=0.01,
                    label="Strength - how strong the emotion is. Setting it to too large a value may result in unstable output.",
                )

                

                # voice select
                toggle = gr.Radio(choices=RADIO_CHOICES, label="Choose voice", value=RADIO_CHOICES[0])

            with gr.Row(visible=True) as row_1:
                preset_dropdown = gr.Dropdown(
                    PRESET_VOICES.keys(), label="Preset voices", value=list(PRESET_VOICES.keys())[0]
                )
                with gr.Accordion("Preview: Preset voices", open=False):
                    for label, path in PRESET_VOICES.items():
                        gr.Audio(value=path, label=label)

            with gr.Row(visible=False) as row_2:
                upload_target = gr.Audio(
                    sources=["upload"],
                    type="filepath",
                    label="Upload a clean sample to clone.",
                )
            with gr.Row():
                emotion_name = gr.Radio(choices=EMO_NAMES, label="Emotion", value=EMO_NAMES[0])
            with gr.Row(visible=True) as row_3:
                upload_neutral = gr.Audio(
                    sources=["upload"],
                    type="filepath",
                    label="Upload a neutral sample to compute the emotion direction. Should be same speaker as the emotional sample.",
                )

                upload_emo = gr.Audio(
                    sources=["upload"],
                    type="filepath",
                    label="Upload an emotional sample to compute the emotion direction. Should be same speaker as the neutral sample.",
                )

            toggle.change(
                change_voice_selection_layout,
                inputs=toggle,
                outputs=[row_1, row_2],
            )

            # emotion_name.change(
            #     change_emotion_selection_layout,
            #     inputs=emotion_name,
            #     outputs=[row_3],
            # )

        with gr.Column():
            speech = gr.Audio(
                type="filepath",
                label="Model says...",
            )

    submit = gr.Button("Generate Speech")
    submit.click(
        fn=generate_sample,
        inputs=[to_say, emotion_name, upload_target, upload_emo, upload_neutral, strength, top_p, guidance, preset_dropdown, toggle],
        outputs=speech,
    )

demo.launch()