Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from PIL import Image
|
|
7 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
import re
|
9 |
|
|
|
10 |
# Define maximum dimensions for the fortune image (in pixels)
|
11 |
MAX_SIZE = (400, 400)
|
12 |
|
@@ -14,11 +15,11 @@ MAX_SIZE = (400, 400)
|
|
14 |
if "button_count_temp" not in st.session_state:
|
15 |
st.session_state.button_count_temp = 0
|
16 |
|
17 |
-
# Set page configuration
|
18 |
st.set_page_config(page_title="Fortuen Stick Enquiry", layout="wide")
|
19 |
st.title("Fortuen Stick Enquiry")
|
20 |
|
21 |
-
# Initialize session state variables
|
22 |
if "submitted_text" not in st.session_state:
|
23 |
st.session_state.submitted_text = False
|
24 |
if "fortune_number" not in st.session_state:
|
@@ -32,6 +33,7 @@ if "cfu_explain_text" not in st.session_state:
|
|
32 |
if "stick_clicked" not in st.session_state:
|
33 |
st.session_state.stick_clicked = False
|
34 |
|
|
|
35 |
if "fortune_data" not in st.session_state:
|
36 |
try:
|
37 |
st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv")
|
@@ -39,9 +41,11 @@ if "fortune_data" not in st.session_state:
|
|
39 |
st.error(f"Error loading CSV: {e}")
|
40 |
st.session_state.fortune_data = None
|
41 |
|
|
|
|
|
42 |
def load_finetuned_classifier_model(question):
|
43 |
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
|
44 |
-
#
|
45 |
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
|
46 |
|
47 |
pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
|
@@ -50,7 +54,7 @@ def load_finetuned_classifier_model(question):
|
|
50 |
print(predicted_label)
|
51 |
return predicted_label
|
52 |
|
53 |
-
#
|
54 |
def generate_answer(question, fortune):
|
55 |
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
|
56 |
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen")
|
@@ -67,30 +71,36 @@ def generate_answer(question, fortune):
|
|
67 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
68 |
return answer
|
69 |
|
|
|
70 |
def analysis(row_detail, classifiy, question):
|
71 |
-
# Use the classifier's output
|
72 |
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
|
73 |
match = pattern.search(row_detail)
|
74 |
if match:
|
75 |
result = match.group(1)
|
76 |
-
#
|
77 |
return generate_answer(question, result)
|
78 |
else:
|
79 |
return "Heaven's secret cannot be revealed."
|
80 |
|
|
|
81 |
def check_sentence_is_english_model(question):
|
82 |
-
pipe_english = pipeline("text-classification", model="
|
83 |
return pipe_english(question)[0]['label'] == 'en'
|
84 |
|
|
|
85 |
def check_sentence_is_question_model(question):
|
86 |
pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
|
87 |
return pipe_question(question)[0]['label'] == 'LABEL_1'
|
88 |
|
|
|
|
|
89 |
def submit_text_callback():
|
90 |
question = st.session_state.get("user_sentence", "")
|
91 |
# Clear any previous error message
|
92 |
st.session_state.error_message = ""
|
93 |
|
|
|
94 |
if not check_sentence_is_english_model(question):
|
95 |
st.session_state.error_message = "Please enter in English!"
|
96 |
st.session_state.button_count_temp = 0
|
@@ -101,18 +111,20 @@ def submit_text_callback():
|
|
101 |
st.session_state.button_count_temp = 0
|
102 |
return
|
103 |
|
|
|
104 |
if st.session_state.button_count_temp == 0:
|
105 |
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
|
106 |
st.session_state.button_count_temp = 1
|
107 |
return
|
108 |
|
|
|
109 |
st.session_state.submitted_text = True
|
110 |
-
st.session_state.button_count_temp = 0
|
111 |
|
112 |
-
# Randomly generate a number
|
113 |
st.session_state.fortune_number = random.randint(1, 100)
|
114 |
|
115 |
-
#
|
116 |
df = st.session_state.fortune_data
|
117 |
row_detail = ''
|
118 |
if df is not None:
|
@@ -137,6 +149,7 @@ def submit_text_callback():
|
|
137 |
}
|
138 |
print(row_detail)
|
139 |
|
|
|
140 |
def load_and_resize_image(path, max_size=MAX_SIZE):
|
141 |
try:
|
142 |
img = Image.open(path)
|
@@ -146,6 +159,7 @@ def load_and_resize_image(path, max_size=MAX_SIZE):
|
|
146 |
st.error(f"Error loading image: {e}")
|
147 |
return None
|
148 |
|
|
|
149 |
def download_and_resize_image(url, max_size=MAX_SIZE):
|
150 |
try:
|
151 |
response = requests.get(url)
|
@@ -158,49 +172,58 @@ def download_and_resize_image(url, max_size=MAX_SIZE):
|
|
158 |
st.error(f"Error loading image from URL: {e}")
|
159 |
return None
|
160 |
|
|
|
161 |
def stick_enquiry_callback():
|
162 |
-
# Retrieve the user's question and
|
163 |
question = st.session_state.get("user_sentence", "")
|
164 |
if not st.session_state.fortune_row:
|
165 |
st.error("Fortune data is not available. Please submit your question first.")
|
166 |
return
|
167 |
row_detail = st.session_state.fortune_row.get("Detail", "No detail available.")
|
168 |
-
|
|
|
169 |
classifiy = load_finetuned_classifier_model(question)
|
170 |
-
# Generate
|
171 |
cfu_explain = analysis(row_detail, classifiy, question)
|
172 |
-
# Save the
|
173 |
st.session_state.cfu_explain_text = cfu_explain
|
174 |
st.session_state.stick_clicked = True
|
175 |
|
176 |
-
#
|
|
|
177 |
left_col, _, right_col = st.columns([3, 1, 5])
|
178 |
|
179 |
-
# ---- Left Column ----
|
180 |
with left_col:
|
181 |
left_top = st.container()
|
182 |
left_bottom = st.container()
|
|
|
|
|
183 |
with left_top:
|
184 |
st.text_area("Enter your question in English", key="user_sentence", height=150)
|
185 |
st.button("submit", key="submit_button", on_click=submit_text_callback)
|
186 |
if st.session_state.error_message:
|
187 |
st.error(st.session_state.error_message)
|
|
|
|
|
188 |
if st.session_state.submitted_text:
|
189 |
with left_bottom:
|
|
|
190 |
for _ in range(5):
|
191 |
st.write("")
|
192 |
col1, col2, col3 = st.columns(3)
|
193 |
with col2:
|
194 |
st.button("Cfu Explain", key="stick_button", on_click=stick_enquiry_callback)
|
195 |
if st.session_state.stick_clicked:
|
196 |
-
# Display the explanation text
|
197 |
st.text_area(' ', value=st.session_state.cfu_explain_text, height=300, disabled=True)
|
198 |
|
199 |
-
# ---- Right Column ----
|
200 |
with right_col:
|
201 |
with st.container():
|
202 |
col_left, col_center, col_right = st.columns([1, 2, 1])
|
203 |
with col_center:
|
|
|
204 |
if st.session_state.submitted_text and st.session_state.fortune_row:
|
205 |
header_link = st.session_state.fortune_row.get("HeaderLink")
|
206 |
if header_link:
|
@@ -220,6 +243,7 @@ with right_col:
|
|
220 |
if img:
|
221 |
st.image(img, caption="Your Fortune", use_container_width=False)
|
222 |
with st.container():
|
|
|
223 |
if st.session_state.fortune_row:
|
224 |
luck_text = st.session_state.fortune_row.get("Luck", "N/A")
|
225 |
description_text = st.session_state.fortune_row.get("Description", "No description available.")
|
@@ -234,4 +258,4 @@ with right_col:
|
|
234 |
st.markdown(summary, unsafe_allow_html=True)
|
235 |
|
236 |
st.text_area("Description", value=description_text, height=150, disabled=True)
|
237 |
-
st.text_area("Detail", value=detail_text, height=150, disabled=True)
|
|
|
7 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
import re
|
9 |
|
10 |
+
# --------------------------- Configuration & Session State ---------------------------
|
11 |
# Define maximum dimensions for the fortune image (in pixels)
|
12 |
MAX_SIZE = (400, 400)
|
13 |
|
|
|
15 |
if "button_count_temp" not in st.session_state:
|
16 |
st.session_state.button_count_temp = 0
|
17 |
|
18 |
+
# Set page configuration and title
|
19 |
st.set_page_config(page_title="Fortuen Stick Enquiry", layout="wide")
|
20 |
st.title("Fortuen Stick Enquiry")
|
21 |
|
22 |
+
# Initialize session state variables for managing application state
|
23 |
if "submitted_text" not in st.session_state:
|
24 |
st.session_state.submitted_text = False
|
25 |
if "fortune_number" not in st.session_state:
|
|
|
33 |
if "stick_clicked" not in st.session_state:
|
34 |
st.session_state.stick_clicked = False
|
35 |
|
36 |
+
# Load fortune details from CSV file into session state
|
37 |
if "fortune_data" not in st.session_state:
|
38 |
try:
|
39 |
st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv")
|
|
|
41 |
st.error(f"Error loading CSV: {e}")
|
42 |
st.session_state.fortune_data = None
|
43 |
|
44 |
+
# --------------------------- Model Functions ---------------------------
|
45 |
+
# Function to load a fine-tuned classifier model and predict a label based on the question
|
46 |
def load_finetuned_classifier_model(question):
|
47 |
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
|
48 |
+
# Mapping to convert default "LABEL_x" outputs to meaningful labels
|
49 |
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
|
50 |
|
51 |
pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
|
|
|
54 |
print(predicted_label)
|
55 |
return predicted_label
|
56 |
|
57 |
+
# Function to generate a detailed answer by combining the user's question and the fortune detail
|
58 |
def generate_answer(question, fortune):
|
59 |
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
|
60 |
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen")
|
|
|
71 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
72 |
return answer
|
73 |
|
74 |
+
# Function that combines analysis with regex to extract the related fortune detail and then generate an answer
|
75 |
def analysis(row_detail, classifiy, question):
|
76 |
+
# Use the classifier's output to match the corresponding detail in the fortune data
|
77 |
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
|
78 |
match = pattern.search(row_detail)
|
79 |
if match:
|
80 |
result = match.group(1)
|
81 |
+
# Generate a custom answer based on the matched fortune detail and the user's question
|
82 |
return generate_answer(question, result)
|
83 |
else:
|
84 |
return "Heaven's secret cannot be revealed."
|
85 |
|
86 |
+
# Function to check if the input sentence is in English using a language detection model
|
87 |
def check_sentence_is_english_model(question):
|
88 |
+
pipe_english = pipeline("text-classification", model="eleldar/language-detection")
|
89 |
return pipe_english(question)[0]['label'] == 'en'
|
90 |
|
91 |
+
# Function to check if the input sentence is a question using a question vs. statement classifier
|
92 |
def check_sentence_is_question_model(question):
|
93 |
pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
|
94 |
return pipe_question(question)[0]['label'] == 'LABEL_1'
|
95 |
|
96 |
+
# --------------------------- Callback Functions ---------------------------
|
97 |
+
# Callback for when the submit button is clicked
|
98 |
def submit_text_callback():
|
99 |
question = st.session_state.get("user_sentence", "")
|
100 |
# Clear any previous error message
|
101 |
st.session_state.error_message = ""
|
102 |
|
103 |
+
# Validate that the input is in English and is a question
|
104 |
if not check_sentence_is_english_model(question):
|
105 |
st.session_state.error_message = "Please enter in English!"
|
106 |
st.session_state.button_count_temp = 0
|
|
|
111 |
st.session_state.button_count_temp = 0
|
112 |
return
|
113 |
|
114 |
+
# Require a second confirmation click to proceed
|
115 |
if st.session_state.button_count_temp == 0:
|
116 |
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
|
117 |
st.session_state.button_count_temp = 1
|
118 |
return
|
119 |
|
120 |
+
# If validations pass, set submission flag and reset click counter
|
121 |
st.session_state.submitted_text = True
|
122 |
+
st.session_state.button_count_temp = 0
|
123 |
|
124 |
+
# Randomly generate a fortune number between 1 and 100
|
125 |
st.session_state.fortune_number = random.randint(1, 100)
|
126 |
|
127 |
+
# Retrieve corresponding fortune details from the CSV based on the generated number
|
128 |
df = st.session_state.fortune_data
|
129 |
row_detail = ''
|
130 |
if df is not None:
|
|
|
149 |
}
|
150 |
print(row_detail)
|
151 |
|
152 |
+
# Function to load and resize a local image file
|
153 |
def load_and_resize_image(path, max_size=MAX_SIZE):
|
154 |
try:
|
155 |
img = Image.open(path)
|
|
|
159 |
st.error(f"Error loading image: {e}")
|
160 |
return None
|
161 |
|
162 |
+
# Function to download an image from a URL and resize it
|
163 |
def download_and_resize_image(url, max_size=MAX_SIZE):
|
164 |
try:
|
165 |
response = requests.get(url)
|
|
|
172 |
st.error(f"Error loading image from URL: {e}")
|
173 |
return None
|
174 |
|
175 |
+
# Callback for when the 'Cfu Explain' button is clicked
|
176 |
def stick_enquiry_callback():
|
177 |
+
# Retrieve the user's question and ensure fortune data is available
|
178 |
question = st.session_state.get("user_sentence", "")
|
179 |
if not st.session_state.fortune_row:
|
180 |
st.error("Fortune data is not available. Please submit your question first.")
|
181 |
return
|
182 |
row_detail = st.session_state.fortune_row.get("Detail", "No detail available.")
|
183 |
+
|
184 |
+
# Classify the question to determine which fortune detail to use
|
185 |
classifiy = load_finetuned_classifier_model(question)
|
186 |
+
# Generate an explanation based on the classification and fortune detail
|
187 |
cfu_explain = analysis(row_detail, classifiy, question)
|
188 |
+
# Save the generated explanation for display
|
189 |
st.session_state.cfu_explain_text = cfu_explain
|
190 |
st.session_state.stick_clicked = True
|
191 |
|
192 |
+
# --------------------------- Layout & Display ---------------------------
|
193 |
+
# Define the main layout with two columns: left for user input and right for fortune display
|
194 |
left_col, _, right_col = st.columns([3, 1, 5])
|
195 |
|
196 |
+
# ---- Left Column: User Input and Interaction ----
|
197 |
with left_col:
|
198 |
left_top = st.container()
|
199 |
left_bottom = st.container()
|
200 |
+
|
201 |
+
# Top container: Question input and submission button
|
202 |
with left_top:
|
203 |
st.text_area("Enter your question in English", key="user_sentence", height=150)
|
204 |
st.button("submit", key="submit_button", on_click=submit_text_callback)
|
205 |
if st.session_state.error_message:
|
206 |
st.error(st.session_state.error_message)
|
207 |
+
|
208 |
+
# Bottom container: Button to trigger explanation and display the generated answer
|
209 |
if st.session_state.submitted_text:
|
210 |
with left_bottom:
|
211 |
+
# Add spacing for better visual separation
|
212 |
for _ in range(5):
|
213 |
st.write("")
|
214 |
col1, col2, col3 = st.columns(3)
|
215 |
with col2:
|
216 |
st.button("Cfu Explain", key="stick_button", on_click=stick_enquiry_callback)
|
217 |
if st.session_state.stick_clicked:
|
218 |
+
# Display the generated explanation text
|
219 |
st.text_area(' ', value=st.session_state.cfu_explain_text, height=300, disabled=True)
|
220 |
|
221 |
+
# ---- Right Column: Fortune Display (Image and Details) ----
|
222 |
with right_col:
|
223 |
with st.container():
|
224 |
col_left, col_center, col_right = st.columns([1, 2, 1])
|
225 |
with col_center:
|
226 |
+
# Display fortune image based on fortune data availability
|
227 |
if st.session_state.submitted_text and st.session_state.fortune_row:
|
228 |
header_link = st.session_state.fortune_row.get("HeaderLink")
|
229 |
if header_link:
|
|
|
243 |
if img:
|
244 |
st.image(img, caption="Your Fortune", use_container_width=False)
|
245 |
with st.container():
|
246 |
+
# Display fortune details: Number, Luck, Description, and Detail
|
247 |
if st.session_state.fortune_row:
|
248 |
luck_text = st.session_state.fortune_row.get("Luck", "N/A")
|
249 |
description_text = st.session_state.fortune_row.get("Description", "No description available.")
|
|
|
258 |
st.markdown(summary, unsafe_allow_html=True)
|
259 |
|
260 |
st.text_area("Description", value=description_text, height=150, disabled=True)
|
261 |
+
st.text_area("Detail", value=detail_text, height=150, disabled=True)
|