Spaces:
Sleeping
Sleeping
File size: 13,344 Bytes
6669689 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import streamlit as st
import random
import pandas as pd
import requests
from io import BytesIO
from PIL import Image
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import re
import time
# --------------------------- Configuration & CSS ---------------------------
MAX_SIZE = (450, 450)
st.set_page_config(page_title="🔮 Divine Fortune Teller", page_icon=":crystal_ball:")
# Updated CSS: added rules to force text color to black for inputs, text areas, and markdown
st.markdown(
"""
<style>
.reportview-container {
background: linear-gradient(135deg, #f6d365, #fda085);
}
.card {
background: rgba(255, 255, 255, 0.95);
padding: 30px;
border-radius: 12px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
max-width: 800px;
margin: auto;
text-align: center;
}
/* Force all text to be black */
body, input, textarea, .stMarkdown, label {
color: black !important;
}
</style>
""",
unsafe_allow_html=True,
)
# --------------------------- Session State Initialization ---------------------------
if 'submitted' not in st.session_state:
st.session_state.submitted = False
if 'error_message' not in st.session_state:
st.session_state.error_message = ""
if 'question' not in st.session_state:
st.session_state.question = ""
if 'fortune_number' not in st.session_state:
st.session_state.fortune_number = None
if 'fortune_row' not in st.session_state:
st.session_state.fortune_row = None
if "button_count_temp" not in st.session_state:
st.session_state.button_count_temp = 0
if "cfu_explain_text" not in st.session_state:
st.session_state.cfu_explain_text = ""
# --------------------------- Load Fortune CSV ---------------------------
if "fortune_data" not in st.session_state:
try:
st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv")
except Exception as e:
st.error(f"Error loading CSV: {e}")
st.session_state.fortune_data = None
# --------------------------- Helper Functions ---------------------------
def load_and_resize_image(path, max_size=MAX_SIZE):
"""
Loads an image from a local file path and resizes it to fit within a specified maximum size.
"""
try:
img = Image.open(path)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image: {e}")
return None
def download_and_resize_image(url, max_size=MAX_SIZE):
"""
Downloads an image from a given URL, then resizes it to a predefined maximum size.
"""
try:
response = requests.get(url)
response.raise_for_status()
image_bytes = BytesIO(response.content)
img = Image.open(image_bytes)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image from URL: {e}")
return None
def display_text_field(label, text, height):
"""
Creates and displays a custom-styled text field with a title and scrollable content.
"""
html = f"""
<h6 style="display: block; margin-top: 10px;">{label}</h6>
<div style="border: 1px solid #ccc; border-radius: 4px; background-color: #f0f0f0;
padding: 10px; height: {height}px; overflow-y: auto; color: black; font-size: 16px;">
<div>{text}</div>
</div>
"""
st.markdown(html, unsafe_allow_html=True)
# --------------------------- Model Functions ---------------------------
def load_finetuned_classifier_model(question):
"""
Uses a fine-tuned text classification model to categorize the user's question into one of several predefined fortune themes.
"""
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
prediction = pipe(question)[0]['label']
predicted_label = mapping.get(prediction, prediction)
return predicted_label
def generate_answer(question, fortune):
"""
Generates a detailed explanation by feeding the question and the selected fortune text into a fine-tuned sequence-to-sequence language model.
"""
start_time = time.perf_counter()
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen", device_map="auto")
input_text = "Question: " + question + " Fortune: " + fortune
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
outputs = model.generate(
**inputs,
max_length=256,
num_beams=4,
early_stopping=True,
repetition_penalty=2.0,
no_repeat_ngram_size=3
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
run_time = time.perf_counter() - start_time
print(f"Runtime: {run_time:.4f} seconds")
return answer
def analysis(row_detail, classifiy, question):
"""
Extracts a specific portion of the fortune details based on the classification result and then generates an answer using the text generation model.
"""
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
match = pattern.search(row_detail)
if match:
result = match.group(1)
return generate_answer(question, result)
else:
return "Heaven's secret cannot be revealed."
def check_sentence_is_english_model(question):
"""
Checks if the provided text is in English using a language detection model.
"""
pipe_english = pipeline("text-classification", model="eleldar/language-detection")
return pipe_english(question)[0]['label'] == 'en'
def check_sentence_is_question_model(question):
"""
Determines whether the input text is formulated as a question using a question vs. statement classifier.
"""
pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
return pipe_question(question)[0]['label'] == 'LABEL_1'
# --------------------------- Callback Functions ---------------------------
def random_draw():
"""
Randomly selects a fortune entry from the loaded CSV based on a randomly generated number and updates the session state with the fortune’s details.
"""
st.session_state.fortune_number = random.randint(1, 100)
df = st.session_state.fortune_data
if df is not None:
matching_row = df[df['CNumber'] == st.session_state.fortune_number]
if not matching_row.empty:
row = matching_row.iloc[0]
st.session_state.fortune_row = {
"Header": row.get("Header", "N/A"),
"Luck": row.get("Luck", "N/A"),
"Description": row.get("Description", "No description available."),
"Detail": row.get("Detail", "No detail available."),
"HeaderLink": row.get("link", None)
}
else:
st.session_state.fortune_row = {
"Header": "N/A",
"Luck": "N/A",
"Description": "No description available.",
"Detail": "No detail available.",
"HeaderLink": None
}
else:
st.session_state.error_message = "Fortune data is not available."
st.session_state.submitted = True
st.session_state.show_explain = False
def submit_callback():
"""
Validates the initial user input (ensuring it’s non-empty, in English, and a question), prompts the user to reflect, and then triggers a random fortune draw if the criteria are met.
"""
question = st.session_state.get("question_input", "").strip()
if not question:
st.session_state.error_message = "Please enter a valid question."
st.session_state.submitted = False
return
if not check_sentence_is_english_model(question):
st.session_state.error_message = "Please enter in English!"
st.session_state.button_count_temp = 0
return
if not check_sentence_is_question_model(question):
st.session_state.error_message = "This is not a question. Please enter again!"
st.session_state.button_count_temp = 0
return
if st.session_state.button_count_temp == 0:
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
st.session_state.button_count_temp = 1
return
st.session_state.error_message = ""
st.session_state.question = question
st.session_state.button_count_temp = 0
random_draw()
def resubmit_callback():
"""
Allows the user to submit a revised question with similar validations, then updates the fortune selection accordingly.
"""
new_question = st.session_state.get("resubmit_input", "").strip()
if new_question == "":
st.session_state.error_message = "Please enter a valid question."
return
if not check_sentence_is_english_model(new_question):
st.session_state.error_message = "Please enter in English!"
st.session_state.button_count_temp = 0
return
if not check_sentence_is_question_model(new_question):
st.session_state.error_message = "This is not a question. Please enter again!"
st.session_state.button_count_temp = 0
return
if st.session_state.button_count_temp == 0:
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
st.session_state.button_count_temp = 1
return
st.session_state.error_message = ""
if new_question != st.session_state.question:
st.session_state.question = new_question
st.session_state.button_count_temp = 0
random_draw()
def explain_callback():
"""
Uses the selected fortune details and the classifier to generate and display a customized explanation for the user's question using the text generation model.
"""
question = st.session_state.question
if not st.session_state.fortune_row:
st.error("Fortune data is not available. Please submit your question first.")
return
row_detail = st.session_state.fortune_row.get("Detail", "No detail available.")
classify = load_finetuned_classifier_model(question)
print(f"classify Checking: {classify}\nQuestion: {question}")
cfu_explain = analysis(row_detail, classify, question)
st.session_state.cfu_explain_text = cfu_explain
st.session_state.show_explain = True
# --------------------------- Layout & Display ---------------------------
st.title("🔮 Divine Fortune Teller")
if not st.session_state.submitted:
st.image("/home/user/app/resources/front.png", use_container_width=True)
st.text_input("Ask your fortune question...", key="question_input")
st.button("Submit", on_click=submit_callback)
if st.session_state.error_message:
st.error(st.session_state.error_message)
else:
st.text_input("Your Question", value=st.session_state.question, key="resubmit_input")
st.button("Resubmit", on_click=resubmit_callback)
if st.session_state.error_message:
st.error(st.session_state.error_message)
col1, col2 = st.columns([2, 3])
with col1:
if st.session_state.fortune_row and st.session_state.fortune_row.get("HeaderLink"):
img_from_url = download_and_resize_image(st.session_state.fortune_row.get("HeaderLink"))
if img_from_url:
st.markdown("<h6> </h6>", unsafe_allow_html=True)
st.image(img_from_url, use_container_width=False)
else:
default_img = load_and_resize_image("/home/user/app/resources/error.png")
if default_img:
st.image(default_img, caption="Default image", use_container_width=False)
else:
default_img = load_and_resize_image("/home/user/app/resources/error.png")
if default_img:
st.image(default_img, caption="Default image", use_container_width=False)
with col2:
if st.session_state.fortune_row:
luck_text = st.session_state.fortune_row.get("Luck", "N/A")
summary = f"""
<div style="font-size: 24px; font-weight: bold;">
Fortune Stick Number: {st.session_state.fortune_number}<br>
Luck: {luck_text}
</div>
"""
st.markdown(summary, unsafe_allow_html=True)
description_text = st.session_state.fortune_row.get("Description", "No description available.")
detail_text = st.session_state.fortune_row.get("Detail", "No detail available.")
# Replace text_area with our custom text field
display_text_field("Description:", description_text, 180)
display_text_field("Detail:", detail_text, 180)
st.button("CFU Explain", on_click=explain_callback)
if st.session_state.show_explain:
display_text_field("Explanation:", st.session_state.cfu_explain_text, 200)
|