File size: 13,344 Bytes
6669689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import streamlit as st
import random
import pandas as pd
import requests
from io import BytesIO
from PIL import Image
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import re
import time

# --------------------------- Configuration & CSS ---------------------------
MAX_SIZE = (450, 450)

st.set_page_config(page_title="🔮 Divine Fortune Teller", page_icon=":crystal_ball:")

# Updated CSS: added rules to force text color to black for inputs, text areas, and markdown
st.markdown(
    """
    <style>
    .reportview-container {
        background: linear-gradient(135deg, #f6d365, #fda085);
    }
    .card {
        background: rgba(255, 255, 255, 0.95);
        padding: 30px;
        border-radius: 12px;
        box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
        max-width: 800px;
        margin: auto;
        text-align: center;
    }
    /* Force all text to be black */
    body, input, textarea, .stMarkdown, label {
        color: black !important;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

# --------------------------- Session State Initialization ---------------------------
if 'submitted' not in st.session_state:
    st.session_state.submitted = False
if 'error_message' not in st.session_state:
    st.session_state.error_message = ""
if 'question' not in st.session_state:
    st.session_state.question = ""
if 'fortune_number' not in st.session_state:
    st.session_state.fortune_number = None
if 'fortune_row' not in st.session_state:
    st.session_state.fortune_row = None
if "button_count_temp" not in st.session_state:
    st.session_state.button_count_temp = 0
if "cfu_explain_text" not in st.session_state:
    st.session_state.cfu_explain_text = ""

# --------------------------- Load Fortune CSV ---------------------------
if "fortune_data" not in st.session_state:
    try:
        st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv")
    except Exception as e:
        st.error(f"Error loading CSV: {e}")
        st.session_state.fortune_data = None

# --------------------------- Helper Functions ---------------------------
def load_and_resize_image(path, max_size=MAX_SIZE):
    """
    Loads an image from a local file path and resizes it to fit within a specified maximum size.
    """
    try:
        img = Image.open(path)
        img.thumbnail(max_size, Image.Resampling.LANCZOS)
        return img
    except Exception as e:
        st.error(f"Error loading image: {e}")
        return None

def download_and_resize_image(url, max_size=MAX_SIZE):
    """
    Downloads an image from a given URL, then resizes it to a predefined maximum size.
    """
    try:
        response = requests.get(url)
        response.raise_for_status()
        image_bytes = BytesIO(response.content)
        img = Image.open(image_bytes)
        img.thumbnail(max_size, Image.Resampling.LANCZOS)
        return img
    except Exception as e:
        st.error(f"Error loading image from URL: {e}")
        return None

def display_text_field(label, text, height):
    """
    Creates and displays a custom-styled text field with a title and scrollable content.
    """
    html = f"""
    <h6 style="display: block; margin-top: 10px;">{label}</h6>
    <div style="border: 1px solid #ccc; border-radius: 4px; background-color: #f0f0f0;
                padding: 10px; height: {height}px; overflow-y: auto; color: black; font-size: 16px;">
        <div>{text}</div>
    </div>
    """
    st.markdown(html, unsafe_allow_html=True)

# --------------------------- Model Functions ---------------------------
def load_finetuned_classifier_model(question):
    """
    Uses a fine-tuned text classification model to categorize the user's question into one of several predefined fortune themes.
    """
    label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
    mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
    pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
    prediction = pipe(question)[0]['label']
    predicted_label = mapping.get(prediction, prediction)
    return predicted_label

def generate_answer(question, fortune):
    """
    Generates a detailed explanation by feeding the question and the selected fortune text into a fine-tuned sequence-to-sequence language model.
    """
    start_time = time.perf_counter()
    tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
    model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen", device_map="auto")
    input_text = "Question: " + question + " Fortune: " + fortune
    inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
    outputs = model.generate(
        **inputs,
        max_length=256,
        num_beams=4,
        early_stopping=True,
        repetition_penalty=2.0,
        no_repeat_ngram_size=3
    )
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    run_time = time.perf_counter() - start_time
    print(f"Runtime: {run_time:.4f} seconds")
    return answer

def analysis(row_detail, classifiy, question):
    """
    Extracts a specific portion of the fortune details based on the classification result and then generates an answer using the text generation model.
    """
    pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
    match = pattern.search(row_detail)
    if match:
        result = match.group(1)
        return generate_answer(question, result)
    else:
        return "Heaven's secret cannot be revealed."

def check_sentence_is_english_model(question):
    """
    Checks if the provided text is in English using a language detection model.
    """
    pipe_english = pipeline("text-classification", model="eleldar/language-detection")
    return pipe_english(question)[0]['label'] == 'en'

def check_sentence_is_question_model(question):
    """
    Determines whether the input text is formulated as a question using a question vs. statement classifier.
    """
    pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
    return pipe_question(question)[0]['label'] == 'LABEL_1'

# --------------------------- Callback Functions ---------------------------
def random_draw():
    """
    Randomly selects a fortune entry from the loaded CSV based on a randomly generated number and updates the session state with the fortune’s details.
    """
    st.session_state.fortune_number = random.randint(1, 100)
    df = st.session_state.fortune_data
    if df is not None:
        matching_row = df[df['CNumber'] == st.session_state.fortune_number]
        if not matching_row.empty:
            row = matching_row.iloc[0]
            st.session_state.fortune_row = {
                "Header": row.get("Header", "N/A"),
                "Luck": row.get("Luck", "N/A"),
                "Description": row.get("Description", "No description available."),
                "Detail": row.get("Detail", "No detail available."),
                "HeaderLink": row.get("link", None)
            }
        else:
            st.session_state.fortune_row = {
                "Header": "N/A",
                "Luck": "N/A",
                "Description": "No description available.",
                "Detail": "No detail available.",
                "HeaderLink": None
            }
    else:
        st.session_state.error_message = "Fortune data is not available."
    
    st.session_state.submitted = True
    st.session_state.show_explain = False

def submit_callback():
    """
    Validates the initial user input (ensuring it’s non-empty, in English, and a question), prompts the user to reflect, and then triggers a random fortune draw if the criteria are met.
    """
    question = st.session_state.get("question_input", "").strip()
    if not question:
        st.session_state.error_message = "Please enter a valid question."
        st.session_state.submitted = False
        return
    
    if not check_sentence_is_english_model(question):
        st.session_state.error_message = "Please enter in English!"
        st.session_state.button_count_temp = 0
        return

    if not check_sentence_is_question_model(question):
        st.session_state.error_message = "This is not a question. Please enter again!"
        st.session_state.button_count_temp = 0
        return

    if st.session_state.button_count_temp == 0:
        st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
        st.session_state.button_count_temp = 1
        return

    st.session_state.error_message = ""
    st.session_state.question = question
    st.session_state.button_count_temp = 0
    random_draw()

def resubmit_callback():
    """
    Allows the user to submit a revised question with similar validations, then updates the fortune selection accordingly.
    """
    new_question = st.session_state.get("resubmit_input", "").strip()
    if new_question == "":
        st.session_state.error_message = "Please enter a valid question."
        return
    
    if not check_sentence_is_english_model(new_question):
        st.session_state.error_message = "Please enter in English!"
        st.session_state.button_count_temp = 0
        return

    if not check_sentence_is_question_model(new_question):
        st.session_state.error_message = "This is not a question. Please enter again!"
        st.session_state.button_count_temp = 0
        return

    if st.session_state.button_count_temp == 0:
        st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
        st.session_state.button_count_temp = 1
        return

    st.session_state.error_message = ""
    if new_question != st.session_state.question:
        st.session_state.question = new_question
    st.session_state.button_count_temp = 0
    random_draw()

def explain_callback():
    """
    Uses the selected fortune details and the classifier to generate and display a customized explanation for the user's question using the text generation model.
    """
    question = st.session_state.question
    if not st.session_state.fortune_row:
        st.error("Fortune data is not available. Please submit your question first.")
        return
    row_detail = st.session_state.fortune_row.get("Detail", "No detail available.")
    
    classify = load_finetuned_classifier_model(question)
    print(f"classify Checking: {classify}\nQuestion: {question}")
    cfu_explain = analysis(row_detail, classify, question)
    st.session_state.cfu_explain_text = cfu_explain
    st.session_state.show_explain = True

# --------------------------- Layout & Display ---------------------------
st.title("🔮 Divine Fortune Teller")

if not st.session_state.submitted:
    st.image("/home/user/app/resources/front.png", use_container_width=True)
    st.text_input("Ask your fortune question...", key="question_input")
    st.button("Submit", on_click=submit_callback)
    
    if st.session_state.error_message:
        st.error(st.session_state.error_message)
else:
    st.text_input("Your Question", value=st.session_state.question, key="resubmit_input")
    st.button("Resubmit", on_click=resubmit_callback)
    if st.session_state.error_message:
        st.error(st.session_state.error_message)
    
    col1, col2 = st.columns([2, 3])
    with col1:
        if st.session_state.fortune_row and st.session_state.fortune_row.get("HeaderLink"):
            img_from_url = download_and_resize_image(st.session_state.fortune_row.get("HeaderLink"))
            if img_from_url:
                st.markdown("<h6> </h6>", unsafe_allow_html=True)
                st.image(img_from_url, use_container_width=False)
            else:
                default_img = load_and_resize_image("/home/user/app/resources/error.png")
                if default_img:
                    st.image(default_img, caption="Default image", use_container_width=False)
        else:
            default_img = load_and_resize_image("/home/user/app/resources/error.png")
            if default_img:
                st.image(default_img, caption="Default image", use_container_width=False)
    
    with col2:
        if st.session_state.fortune_row:
            luck_text = st.session_state.fortune_row.get("Luck", "N/A")
            summary = f"""
            <div style="font-size: 24px; font-weight: bold;">
                Fortune Stick Number: {st.session_state.fortune_number}<br>
                Luck: {luck_text}
            </div>
            """
            st.markdown(summary, unsafe_allow_html=True)
            description_text = st.session_state.fortune_row.get("Description", "No description available.")
            detail_text = st.session_state.fortune_row.get("Detail", "No detail available.")
            # Replace text_area with our custom text field
            display_text_field("Description:", description_text, 180)
            display_text_field("Detail:", detail_text, 180)
    
    st.button("CFU Explain", on_click=explain_callback)
    if st.session_state.show_explain:
        display_text_field("Explanation:", st.session_state.cfu_explain_text, 200)