import numpy as np import pandas as pd # type: ignore import os import keras import tensorflow as tf from tensorflow.keras.models import load_model import pymongo import streamlit as st from sentence_transformers import SentenceTransformer from langchain.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from langchain.schema.runnable import RunnablePassthrough from langchain.schema.output_parser import StrOutputParser from langchain_core.messages import HumanMessage, SystemMessage from PIL import Image import json import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap import textwrap import plotly.graph_objects as go st.set_page_config( page_title="Food Chain", page_icon="🍴", layout="wide" ) # Main App if "theme_mode" not in st.session_state: st.session_state.theme_mode = st.get_option("theme.base") # Check for changes in theme mode current_theme_mode = st.get_option("theme.base") if current_theme_mode != st.session_state.theme_mode: st.session_state.theme_mode = current_theme_mode st.experimental_rerun() os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") mongo_uri = os.getenv("MONGO_URI_RAG_RECIPE") @st.cache_resource def loadEmbedding(): embedding = SentenceTransformer("thenlper/gte-large") return embedding embedding = loadEmbedding() def getEmbedding(text): if not text.strip(): print("Text was empty") return [] encoded = embedding.encode(text) return encoded.tolist() # Connect to MongoDB def get_mongo_client(mongo_uri): try: client = pymongo.MongoClient(mongo_uri) print("Connection to MongoDB successful") return client except pymongo.errors.ConnectionFailure as e: print(f"Connection failed: {e}") return None if not mongo_uri: print("MONGO_URI not set in env") mongo_client = get_mongo_client(mongo_uri) mongo_db = mongo_client['recipes'] mongo_collection = mongo_db['recipesCollection'] def vector_search(user_query, collection): query_embedding = getEmbedding(user_query) if query_embedding is None: return "Invalid query or embedding gen failed" vector_search_stage = { "$vectorSearch": { "index": "vector_index", "queryVector": query_embedding, "path": "embedding", "numCandidates": 150, # Number of candidate matches to consider "limit": 4 # Return top 4 matches } } unset_stage = { "$unset": "embedding" # Exclude the 'embedding' field from the results } project_stage = { "$project": { "_id": 0, # Exclude the _id field "name": 1, "minutes": 1, "tags": 1, "n_steps": 1, "description": 1, "ingredients": 1, "n_ingredients": 1, "formatted_nutrition": 1, "formatted_steps": 1, "score": { "$meta": "vectorSearchScore" # Include the search score } } } pipeline = [vector_search_stage, unset_stage, project_stage] results = mongo_collection.aggregate(pipeline) return list(results) def mongo_retriever(query): print("mongo retriever query: ", query) documents = vector_search(query, mongo_collection) print("Documents Retrieved: ", documents) return documents template = """ You are an assistant for generating results based on user questions. Use the provided context to generate a result based on the following JSON format: {{ "name": "Recipe Name", "minutes": 0, "tags": [ "tag1", "tag2", "tag3" ], "n_steps": 0, "description": "A GENERAL description of the recipe goes here.", "ingredients": [ "0 tablespoons ingredient1", "0 cups ingredient2", "0 teaspoons ingredient3" ], "n_ingredients": 0, "formatted_nutrition": [ "Calorie : per serving", "Total Fat : % daily value", "Sugar : % daily value", "Sodium : % daily value", "Protein : % daily value", "Saturated Fat : % daily value", "Total Carbohydrate : % daily value" ], "formatted_steps": [ "1. Step 1 of the recipe.", "2. Step 2 of the recipe.", "3. Step 3 of the recipe." ] }} Instructions: 1. Focus on the user's specific request and avoid irrelevant ingredients or approaches. 2. Do not return anything other than the JSON. 3. Base the response on simple, healthy, and accessible ingredients and techniques. 4. Rewrite the description in third person 5. Include the ingredient amounts and say them in the steps. 6. If the query makes no sense when trying to connection to a real dish, return [] 7. RETURN NOTHING BUT THE JSON When choosing a recipe from the context, FOLLOW these instructions: 1. The recipe should be makeable from scratch, using only proper ingredients and not other dishes or pre-made recipes 2. If the recipes from the context makes sense but do not match {question}, generate an amazing, specific recipe for {question} with precise steps and measurements. Take some inspiration from context if availab.e 3. Following the above template. 4. If the query makes no sense when trying to connection to a real dish, return [] 5. RETURN NOTHING BUT THE JSON Context: {context} Question: {question} """ custom_rag_prompt = ChatPromptTemplate.from_template(template) llm = ChatOpenAI( model_name="hf:meta-llama/Llama-3.3-70B-Instruct", api_key = os.environ.get('GLHF_API_KEY'), base_url = 'https://glhf.chat/api/openai/v1', temperature=0.2) rag_chain = ( {"context": mongo_retriever, "question": RunnablePassthrough()} | custom_rag_prompt | llm | StrOutputParser() ) def get_response(query): if query: print("get_response query: ", query) return rag_chain.invoke(query) return "" ############################################## # Classifier img_size = 224 @st.cache_resource def loadModel(): model = load_model('efficientnet-fine-d1.keras') return model model = loadModel() class_names = [ "apple_pie", "baby_back_ribs", "baklava", "beef_carpaccio", "beef_tartare", "beet_salad", "beignets", "bibimbap", "bread_pudding", "breakfast_burrito", "bruschetta", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheese_plate", "cheesecake", "chicken_curry", "chicken_quesadilla", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare", "waffles" ] def classifyImage(input_image): input_image = input_image.resize((img_size, img_size)) input_array = tf.keras.utils.img_to_array(input_image) # Add a batch dimension input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3) predictions = model.predict(input_array)[0] print(f"Predictions: {predictions}") # Sort predictions to get top 5 top_indices = np.argsort(predictions)[-5:][::-1] # Prepare the top 5 predictions with their class names and percentages top_predictions = [(class_names[i], predictions[i] * 100) for i in top_indices] for i, (class_name, confidence) in enumerate(top_predictions, 1): print(f"{i}. Predicted {class_name} with {confidence:.1f}% Confidence") return top_predictions def capitalize_after_number(input_string): # Split the string on the first period if ". " in input_string: num, text = input_string.split(". ", 1) return f"{num}. {text.capitalize()}" return input_string ############################################## #for displaying RAG recipe response def display_response(response): """ Function to format a JSON response into Streamlit's `st.write()` format. """ if response == "[]" or "": st.write("No recipes found :(") return if isinstance(response, str): # Convert JSON string to dictionary if necessary response = json.loads(response) with st.container(height=800): st.write(f"**Name**: {response['name'].capitalize()}") st.write(f"**Preparation Time**: {response['minutes']} minutes") st.write(f"**Description**: {response['description'].capitalize()}") st.write(f"**Tags**: {', '.join(response['tags'])}") st.write("### Ingredients") st.write(", ".join([ingredient.capitalize() for ingredient in response['ingredients']])) st.write(f"**Total Ingredients**: {response['n_ingredients']}") st.write("### Nutrition Information (per serving)") st.write(", ".join(response['formatted_nutrition'])) st.write(f"Number of Steps: {response['n_steps']}") st.write("### Steps") for step in response['formatted_steps']: st.write(capitalize_after_number(step)) # st.write(f"Name: {response['name'].capitalize()}") # st.write(f"Preparation Time: {response['minutes']} minutes") # st.write(f"Description: {response['description'].capitalize()}") # st.write(f"Tags: {', '.join(response['tags'])}") # st.write("### Ingredients") # st.write(", ".join([ingredient.capitalize() for ingredient in response['ingredients']])) # st.write(f"Total Ingredients: {response['n_ingredients']}") # st.write("### Nutrition Information (per serving)") # st.write(", ".join(response['formatted_nutrition'])) # st.write(f"Number of Steps: {response['n_steps']}") # st.write("### Steps") # for step in response['formatted_steps']: # st.write(capitalize_after_number(step)) def display_dishes_in_grid(dishes, cols=3): rows = len(dishes) // cols + int(len(dishes) % cols > 0) for i in range(rows): cols_data = dishes[i*cols:(i+1)*cols] cols_list = st.columns(len(cols_data)) for col, dish in zip(cols_list, cols_data): with col: st.sidebar.write(dish.replace("_", " ").capitalize()) def display_prediction_graph(class_names, confidences): # Create a list of labels and values from the predictions dictionary values = [str(round(value, 1)) + "%" for value in confidences] # Wrap class names if they are too long class_names = [textwrap.fill(class_name, width=10) for class_name in class_names] # Determine the top prediction class_names.reverse() # Determine the top prediction values.reverse() top_prediction = class_names[-1] # Create a horizontal bar chart fig = go.Figure(go.Bar( x=values, y=class_names, orientation='h', marker=dict(color='orange'), text=values, # Display values on the bars textposition='inside' # Position the text inside the bars )) # Update layout for better appearance fig.update_layout( title=f"Prediction: {top_prediction}", margin=dict(l=20, r=20, t=60, b=20), xaxis=dict( showgrid=False, # No grid lines for the x-axis ticks='', # No x-axis ticks showticklabels=False # No x-axis tick labels ), yaxis=dict( showgrid=False # No grid lines for the y-axis ), plot_bgcolor='rgba(0,0,0,0)', # No background color for the plot area paper_bgcolor='rgba(0,0,0,0)', # No background color for the paper area font=dict() # Default font color ) # Display the chart in Streamlit st.plotly_chart(fig) # #Streamlit #Left sidebar title st.sidebar.markdown( "

Food-Chain

", unsafe_allow_html=True ) st.sidebar.write("Upload an image and/or enter a query to get started! Explore our trained dish types listed below for guidance.") st.sidebar.markdown('### Food Classification') uploaded_image = st.sidebar.file_uploader("Choose an image:", type="jpg") st.sidebar.markdown('### RAG Recipe') query = st.sidebar.text_area("Enter your query (optional):", height=100) recipe_submit = st.sidebar.button(label='Chain Recipe', icon=':material/link:', use_container_width=True) # gap st.sidebar.markdown("

", unsafe_allow_html=True) st.sidebar.markdown("### Dish Database") selected_dish = st.sidebar.selectbox( "Search for a dish that our model can classify:", options=class_names, index=0 ) # Main title st.title("Welcome to FOOD CHAIN!") with st.expander("**What is FOOD CHAIN?**"): st.markdown( """ The project aims to use machine learning and computer vision techniques to analyze food images and identify them. By using diverse datasets, the model will learn to recognize dishes based on visual features. Our project aims to inform users about what it is they are eating, including potential nutritional value and an AI generated response on how their dish might have been prepared. We want users to have an easy way to figure out what their favorite foods contain, to know any allergens in the food and to better connect to the food around them. This tool can also tell users the calories of their dish, they can figure out the nutrients with only a few steps! Thank you for using our project! Made by the Classify Crew: [Contact List](https://linktr.ee/classifycrew) """ ) ################# sample_RAG = { "name": "Cinnamon Sugar Baked Donuts", "minutes": 27, "tags": [ "30-minutes-or-less", "time-to-make", "course", "cuisine", "preparation", "occasion", "north-american", "healthy", "desserts", "american", "dietary", "comfort-food", "taste-mood" ], "n_steps": 10, "description": "A delightful treat with a crusty sugar-cinnamon coating, perfect for a weekend breakfast or snack. Leftovers freeze well.", "ingredients": [ "1 cup flour", "1 teaspoon baking powder", "1 teaspoon cinnamon", "1/2 teaspoon nutmeg", "1/4 teaspoon mace", "1/4 teaspoon salt", "1/2 cup sugar", "1 egg", "1/2 cup milk", "2 tablespoons butter, melted", "1 teaspoon vanilla", "1/4 cup brown sugar" ], "n_ingredients": 12, "formatted_nutrition": [ "Calorie : 302.9 per serving", "Total Fat : 11.0 % daily value", "Sugar : 154.0 % daily value", "Sodium : 9.0 % daily value", "Protein : 7.0 % daily value", "Saturated Fat : 22.0 % daily value", "Total Carbohydrate : 18.0 % daily value" ], "formatted_steps": [ "1. Mix all dry ingredients in a medium-size bowl", "2. In a smaller bowl, beat the egg", "3. Mix the egg with milk and melted butter", "4. Add vanilla to the mixture", "5. Stir the milk mixture into the dry ingredients until just combined, being careful not to overmix", "6. Pour the batter into a greased donut baking tin, filling approximately 3/4 full", "7. Mix cinnamon into brown sugar and sprinkle over the donuts", "8. Drizzle or spoon melted butter over the top of each donut", "9. Bake in a 350-degree oven for 17 minutes", "10. Enjoy!" ] } col1, col2 = st.columns(2) with col1: st.title("Image Classification") if not uploaded_image: placeholder = Image.open("dish-placeholder.jpg") st.image(placeholder, caption="Placeholder Image.", use_container_width=True) sample_class_names = ['Donuts', 'Onion Rings', 'Beignets', 'Churros', 'Cup Cakes'] sample_confidences = [98.1131911277771, 1.3879689387977123, 0.12678804341703653, 0.05296396557241678, 0.04436225863173604] display_prediction_graph(sample_class_names, sample_confidences) else: # Open and display image input_image = Image.open(uploaded_image) st.image(input_image, caption="Uploaded Image.", use_container_width=True) with col2: st.title('RAG Recipe') if not recipe_submit: display_response(sample_RAG) # Image Classification Section if recipe_submit and uploaded_image: with col1: predictions = classifyImage(input_image) print("Predictions: ", predictions) # graph variables fpredictions = "" class_names = [] confidences = [] # Show the top predictions with percentages # st.write("Top Predictions:") for class_name, confidence in predictions: fpredictions += f"{class_name}: {confidence:.1f}%," class_name = class_name.replace("_", " ") class_name = class_name.title() # st.markdown(f"*{class_name}*: {confidence:.2f}%") class_names.append(class_name) confidences.append(confidence) print(fpredictions) display_prediction_graph(class_names, confidences) # call openai to pick the best classification result based on query openAICall = [ SystemMessage( content = "You are a helpful assistant that identifies the best match between classified food items and a user's request based on provided classifications and keywords." ), HumanMessage( content = f""" Based on the following image classification with percentages of each food: {fpredictions} And the following user request: {query} 1. If the user's query relates to any of the classified predictions (even partially or conceptually), select the most relevant dish from the predictions. 2. If the query does not align with the predictions, disregard them and suggest a dish that best matches the user's query. 3. Consider culture, ingredients, cooking steps, etc. 4. Return in the format: [dish] 5. ONLY return the name of the dish in brackets. Example 1: Predictions: apple pie: 50%, cherry tart: 30%, vanilla ice cream: 20% User query: pumpkin YOUR Response: [pumpkin pie] Example 2: Predictions: spaghetti: 60%, lasagna: 30%, salad: 10% User query: pasta with layers YOUR Response: [lasagna] Example 3: Predictions: sushi: 70%, sashimi: 20%, ramen: 10% User query: noodles YOUR Response: [ramen] """ ), ] with col2, st.spinner("Generating..."): if query: # Call the OpenAI API openAIresponse = llm.invoke(openAICall) print("AI CALL RESPONSE: ", openAIresponse.content, "END AI CALL RESONSE") RAGresponse = get_response(openAIresponse.content + " " + query) else: RAGresponse = get_response(predictions[0][0]) print("RAGresponse: ", RAGresponse) display_response(RAGresponse) elif recipe_submit and query: with col2, st.spinner("Generating..."): response = get_response(query) print(response) display_response(response) else: st.warning('Please input an image or a query.', icon="🍕")