Spaces:
Sleeping
Sleeping
from functools import lru_cache | |
from typing import List, Mapping | |
import gradio as gr | |
import numpy as np | |
import onnxruntime as ort | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
def _yield_tags_from_txt_file(txt_file: str): | |
with open(txt_file, 'r') as f: | |
for line in f: | |
if line: | |
yield line.strip() | |
def get_deepdanbooru_tags() -> List[str]: | |
tags_file = hf_hub_download('chinoll/deepdanbooru', 'tags.txt') | |
return list(_yield_tags_from_txt_file(tags_file)) | |
def get_deepdanbooru_onnx() -> ort.InferenceSession: | |
onnx_file = hf_hub_download('chinoll/deepdanbooru', 'deepdanbooru.onnx') | |
return ort.InferenceSession(onnx_file) | |
def image_preprocess(image: Image.Image) -> np.ndarray: | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
o_width, o_height = image.size | |
scale = 512.0 / max(o_width, o_height) | |
f_width, f_height = map(lambda x: int(x * scale), (o_width, o_height)) | |
image = image.resize((f_width, f_height)) | |
data = np.asarray(image).astype(np.float32) / 255 # H x W x C | |
height_pad_left = (512 - f_height) // 2 | |
height_pad_right = 512 - f_height - height_pad_left | |
width_pad_left = (512 - f_width) // 2 | |
width_pad_right = 512 - f_width - width_pad_left | |
data = np.pad(data, ((height_pad_left, height_pad_right), (width_pad_left, width_pad_right), (0, 0)), | |
mode='constant', constant_values=0.0) | |
assert data.shape == (512, 512, 3), f'Shape (512, 512, 3) expected, but {data.shape!r} found.' | |
return data.reshape((1, 512, 512, 3)) # B x H x W x C | |
def image_to_deepdanbooru_tags(image: Image.Image, threshold: float) -> Mapping[str, float]: | |
tags = get_deepdanbooru_tags() | |
session = get_deepdanbooru_onnx() | |
input_name = session.get_inputs()[0].name | |
output_names = [output.name for output in session.get_outputs()] | |
result = session.run(output_names, {input_name: image_preprocess(image)})[0] | |
return { | |
tag: float(score) for tag, score in zip(tags, result[0]) | |
if score >= threshold | |
} | |
if __name__ == '__main__': | |
interface = gr.Interface( | |
image_to_deepdanbooru_tags, | |
inputs=[ | |
gr.Image(type='pil', label='Original Image'), | |
gr.Slider(0.0, 1.0, 0.5, label='Tagging Confidence Threshold')], | |
outputs=[ | |
gr.Label(), | |
], | |
interpretation="default" | |
) | |
interface.launch() | |