Spaces:
Sleeping
Sleeping
import os | |
import re | |
from functools import lru_cache | |
from typing import List, Mapping, Tuple | |
import gradio as gr | |
import numpy as np | |
import onnxruntime as ort | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import io | |
from fastapi import FastAPI, File, UploadFile, Form | |
from fastapi.responses import JSONResponse | |
import uvicorn | |
app = FastAPI() | |
def _yield_tags_from_txt_file(txt_file: str): | |
with open(txt_file, 'r') as f: | |
for line in f: | |
if line: | |
yield line.strip() | |
def get_deepdanbooru_tags() -> List[str]: | |
tags_file = hf_hub_download('chinoll/deepdanbooru', 'tags.txt') | |
return list(_yield_tags_from_txt_file(tags_file)) | |
def get_deepdanbooru_onnx() -> ort.InferenceSession: | |
onnx_file = hf_hub_download('chinoll/deepdanbooru', 'deepdanbooru.onnx') | |
return ort.InferenceSession(onnx_file) | |
def image_preprocess(image: Image.Image) -> np.ndarray: | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
o_width, o_height = image.size | |
scale = 512.0 / max(o_width, o_height) | |
f_width, f_height = map(lambda x: int(x * scale), (o_width, o_height)) | |
image = image.resize((f_width, f_height)) | |
data = np.asarray(image).astype(np.float32) / 255 # H x W x C | |
height_pad_left = (512 - f_height) // 2 | |
height_pad_right = 512 - f_height - height_pad_left | |
width_pad_left = (512 - f_width) // 2 | |
width_pad_right = 512 - f_width - width_pad_left | |
data = np.pad( | |
data, | |
((height_pad_left, height_pad_right), (width_pad_left, width_pad_right), (0, 0)), | |
mode='constant', | |
constant_values=0.0 | |
) | |
assert data.shape == (512, 512, 3), f'Shape (512, 512, 3) expected, but {data.shape!r} found.' | |
return data.reshape((1, 512, 512, 3)) # B x H x W x C | |
RE_SPECIAL = re.compile(r'([\\()])') | |
def image_to_deepdanbooru_tags( | |
image: Image.Image, | |
threshold: float, | |
use_spaces: bool, | |
use_escape: bool, | |
include_ranks: bool, | |
score_descend: bool | |
) -> Tuple[str, Mapping[str, float]]: | |
tags = get_deepdanbooru_tags() | |
session = get_deepdanbooru_onnx() | |
input_name = session.get_inputs()[0].name | |
output_names = [output.name for output in session.get_outputs()] | |
result = session.run(output_names, {input_name: image_preprocess(image)})[0] | |
filtered_tags = { | |
tag: float(score) for tag, score in zip(tags, result[0]) | |
if score >= threshold | |
} | |
text_items = [] | |
tags_pairs = filtered_tags.items() | |
if score_descend: | |
tags_pairs = sorted(tags_pairs, key=lambda x: (-x[1], x[0])) | |
for tag, score in tags_pairs: | |
tag_outformat = tag | |
if use_spaces: | |
tag_outformat = tag_outformat.replace('_', ' ') | |
if use_escape: | |
tag_outformat = re.sub(RE_SPECIAL, r'\\\1', tag_outformat) | |
if include_ranks: | |
tag_outformat = f"({tag_outformat}:{score:.3f})" | |
text_items.append(tag_outformat) | |
output_text = ', '.join(text_items) | |
return output_text, filtered_tags | |
from typing import Optional | |
async def tagging_endpoint( | |
image: UploadFile = File(...), | |
threshold: Optional[float] = Form(0.5) | |
): | |
image_data = await image.read() | |
pil_image = Image.open(io.BytesIO(image_data)).convert("RGB") | |
output_text, filtered_tags = image_to_deepdanbooru_tags( | |
pil_image, | |
threshold=threshold, | |
use_spaces=False, | |
use_escape=False, | |
include_ranks=False, | |
score_descend=True | |
) | |
tags = list(filtered_tags.keys()) | |
return JSONResponse(content={"tags": tags}) | |
def gradio_interface( | |
image: Image.Image, | |
threshold: float, | |
use_spaces: bool, | |
use_escape: bool, | |
include_ranks: bool, | |
score_descend: bool | |
): | |
output_text, filtered_tags = image_to_deepdanbooru_tags( | |
image, threshold, use_spaces, use_escape, include_ranks, score_descend | |
) | |
return output_text, filtered_tags | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr_input_image = gr.Image(type='pil', label='Original Image') | |
gr_threshold = gr.Slider(0.0, 1.0, 0.5, label='Tagging Confidence Threshold') | |
with gr.Row(): | |
gr_space = gr.Checkbox(value=False, label='Use Space Instead Of _') | |
gr_escape = gr.Checkbox(value=True, label='Use Text Escape') | |
gr_confidence = gr.Checkbox(value=False, label='Keep Confidences') | |
gr_order = gr.Checkbox(value=True, label='Descend By Confidence') | |
gr_btn_submit = gr.Button(value='Tagging', variant='primary') | |
with gr.Column(): | |
with gr.Tabs(): | |
with gr.Tab("Tags"): | |
gr_tags = gr.Label(label='Tags') | |
with gr.Tab("Exported Text"): | |
gr_output_text = gr.TextArea(label='Exported Text') | |
gr_btn_submit.click( | |
gradio_interface, | |
inputs=[gr_input_image, gr_threshold, gr_space, gr_escape, gr_confidence, gr_order], | |
outputs=[gr_output_text, gr_tags], | |
) | |
app = gr.mount_gradio_app(app, demo, path="/") | |
if __name__ == '__main__': | |
uvicorn.run(app, host='0.0.0.0', port=7860) | |