File size: 4,255 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import gradio as gr  # gradio==4.20.0

os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
import cv2
import numpy as np
import json
import time
from PIL import Image
from tools.infer_e2e import OpenOCR, check_and_download_font, draw_ocr_box_txt

drop_score = 0.01
text_sys = OpenOCR(drop_score=drop_score)
# warm up 5 times
if True:
    img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
    for i in range(5):
        res = text_sys(img_numpy=img)
font_path = './simfang.ttf'
check_and_download_font(font_path)


def main(input_image):
    img = input_image[:, :, ::-1]
    starttime = time.time()
    results, time_dict, mask = text_sys(img_numpy=img, return_mask=True)
    elapse = time.time() - starttime
    save_pred = json.dumps(results[0], ensure_ascii=False)
    image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    boxes = [res['points'] for res in results[0]]
    txts = [res['transcription'] for res in results[0]]
    scores = [res['score'] for res in results[0]]
    draw_img = draw_ocr_box_txt(
        image,
        boxes,
        txts,
        scores,
        drop_score=drop_score,
        font_path=font_path,
    )
    mask = mask[0, 0, :, :] > 0.3
    return save_pred, elapse, draw_img, mask.astype('uint8') * 255


def get_all_file_names_including_subdirs(dir_path):
    all_file_names = []

    for root, dirs, files in os.walk(dir_path):
        for file_name in files:
            all_file_names.append(os.path.join(root, file_name))

    file_names_only = [os.path.basename(file) for file in all_file_names]
    return file_names_only


def list_image_paths(directory):
    image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff')

    image_paths = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.lower().endswith(image_extensions):
                relative_path = os.path.relpath(os.path.join(root, file),
                                                directory)
                full_path = os.path.join(directory, relative_path)
                image_paths.append(full_path)
    image_paths = sorted(image_paths)
    return image_paths


def find_file_in_current_dir_and_subdirs(file_name):
    for root, dirs, files in os.walk('.'):
        if file_name in files:
            relative_path = os.path.join(root, file_name)
            return relative_path


def predict1(input_image, Model_type, OCR_type):
    if OCR_type == 'E2E':
        return 11111, 'E2E', input_image
    elif OCR_type == 'STR':
        return 11111, 'STR', input_image
    else:
        return 11111, 'STD', input_image


e2e_img_example = list_image_paths('./OCR_e2e_img')

if __name__ == '__main__':
    css = '.image-container img { width: 100%; max-height: 320px;}'

    with gr.Blocks(css=css) as demo:
        gr.HTML("""
                <h1 style='text-align: center;'>OpenOCR</h1>""")
        with gr.Row():
            with gr.Column(scale=1):
                input_image = gr.Image(label='Input image',
                                       elem_classes=['image-container'])

                examples = gr.Examples(examples=e2e_img_example,
                                       inputs=input_image,
                                       label='Examples')
                downstream = gr.Button('Run')

            with gr.Column(scale=1):
                img_mask = gr.Image(label='mask',
                                    interactive=False,
                                    elem_classes=['image-container'])
                img_output = gr.Image(label=' ',
                                      interactive=False,
                                      elem_classes=['image-container'])

                output = gr.Textbox(label='Result')
                confidence = gr.Textbox(label='Latency')

            downstream.click(fn=main,
                             inputs=[
                                 input_image,
                             ],
                             outputs=[
                                 output,
                                 confidence,
                                 img_output,
                                 img_mask,
                             ])

    demo.launch(share=True)