File size: 3,963 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
Global:
  device: gpu
  epoch_num: 20
  log_smooth_window: 20
  print_batch_step: 10
  output_dir: ./output/rec/u14m_filter/svtrv2_mgpstr_only_char/
  eval_epoch_step: [0, 1]
  eval_batch_step: [0, 500]
  cal_metric_during_train: True
  pretrained_model:
  checkpoints:
  use_tensorboard: false
  infer_img:
  # for data or label process
  character_dict_path: &character_dict_path ./tools/utils/EN_symbol_dict.txt
  max_text_length: &max_text_length 25
  use_space_char: &use_space_char False
  use_amp: True
  save_res_path: ./output/rec/u14m_filter/predicts_svtrv2_mgpstr_only_char.txt

Optimizer:
  name: AdamW
  lr: 0.00065 # 4gpus 256bs/gpu
  weight_decay: 0.05
  filter_bias_and_bn: True

LRScheduler:
  name: OneCycleLR
  warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep
  cycle_momentum: False

Architecture:
  model_type: rec
  algorithm: MGPSTR
  Transform:
  Encoder:
    name: SVTRv2LNConvTwo33
    use_pos_embed: False
    out_channels: 256
    dims: [128, 256, 384]
    depths: [6, 6, 6]
    num_heads: [4, 8, 12]
    mixer: [['Conv','Conv','Conv','Conv','Conv','Conv'],['Conv','Conv','FGlobal','Global','Global','Global'],['Global','Global','Global','Global','Global','Global']]
    local_k: [[5, 5], [5, 5], [-1, -1]]
    sub_k: [[1, 1], [2, 1], [-1, -1]]
    last_stage: false
    feat2d: false
  Decoder:
    name: MGPDecoder
    only_char: &only_char True

Loss:
  name: MGPLoss
  only_char: *only_char

PostProcess:
  name: MPGLabelDecode
  character_dict_path: *character_dict_path
  use_space_char: *use_space_char
  only_char: *only_char

Metric:
  name: RecMetric
  main_indicator: acc
  is_filter: True

Train:
  dataset:
    name: RatioDataSetTVResize
    ds_width: True
    padding: false
    data_dir_list: ['../Union14M-L-LMDB-Filtered/filter_filter_train_challenging',
    '../Union14M-L-LMDB-Filtered/filter_filter_train_hard',
    '../Union14M-L-LMDB-Filtered/filter_filter_train_medium',
    '../Union14M-L-LMDB-Filtered/filter_filter_train_normal',
    '../Union14M-L-LMDB-Filtered/filter_filter_train_easy',
    ]
    transforms:
      - DecodeImagePIL: # load image
          img_mode: RGB
      - PARSeqAugPIL:
      - MGPLabelEncode: # Class handling label
          character_dict_path: *character_dict_path
          use_space_char: *use_space_char
          max_text_length: *max_text_length
          only_char: *only_char
      - KeepKeys:
          keep_keys: ['image', 'char_label', 'length'] # dataloader will return list in this order
  sampler:
    name: RatioSampler
    scales: [[128, 32]] # w, h
    # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
    first_bs: &bs 256
    fix_bs: false
    divided_factor: [4, 16] # w, h
    is_training: True
  loader:
    shuffle: True
    batch_size_per_card: *bs
    drop_last: True
    max_ratio: &max_ratio 4
    num_workers: 4

Eval:
  dataset:
    name: RatioDataSetTVResize
    ds_width: True
    padding: False
    data_dir_list: [
      '../evaluation/CUTE80',
      '../evaluation/IC13_857',
      '../evaluation/IC15_1811',
      '../evaluation/IIIT5k',
      '../evaluation/SVT',
      '../evaluation/SVTP',
      ]
    transforms:
      - DecodeImagePIL: # load image
          img_mode: RGB
      - MGPLabelEncode: # Class handling label
          character_dict_path: *character_dict_path
          use_space_char: *use_space_char
          max_text_length: *max_text_length
          only_char: *only_char
      - KeepKeys:
          keep_keys: ['image', 'char_label', 'length'] # dataloader will return list in this order
  sampler:
    name: RatioSampler
    scales: [[128, 32]] # w, h
    # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
    first_bs: *bs
    fix_bs: false
    divided_factor: [4, 16] # w, h
    is_training: False
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: *bs
    max_ratio: *max_ratio
    num_workers: 4