File size: 7,062 Bytes
695a4a4
 
 
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695a4a4
 
 
 
 
 
29f689c
 
695a4a4
 
 
 
 
 
29f689c
 
 
 
 
 
 
 
 
 
 
695a4a4
29f689c
 
695a4a4
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac9bf47
 
29f689c
 
 
 
 
 
 
 
 
 
695a4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
695a4a4
 
 
29f689c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- encoding: utf-8 -*-
# @Author: OpenOCR
# @Contact: [email protected]
import os
import gradio as gr  # gradio==4.20.0

os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
import cv2
import numpy as np
import json
import time
from PIL import Image
from tools.infer_e2e import OpenOCR, check_and_download_font, draw_ocr_box_txt

drop_score = 0.01
text_sys = OpenOCR(drop_score=drop_score)
# warm up 5 times
if True:
    img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
    for i in range(5):
        res = text_sys(img_numpy=img)
font_path = './simfang.ttf'
check_and_download_font(font_path)


def main(input_image,
         rec_drop_score=0.01,
         mask_thresh=0.3,
         box_thresh=0.6,
         unclip_ratio=1.5,
         det_score_mode='slow'):
    img = input_image[:, :, ::-1]
    starttime = time.time()
    results, time_dict, mask = text_sys(img_numpy=img,
                                        return_mask=True,
                                        thresh=mask_thresh,
                                        box_thresh=box_thresh,
                                        unclip_ratio=unclip_ratio,
                                        score_mode=det_score_mode)
    elapse = time.time() - starttime
    save_pred = json.dumps(results[0], ensure_ascii=False)
    image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    boxes = [res['points'] for res in results[0]]
    txts = [res['transcription'] for res in results[0]]
    scores = [res['score'] for res in results[0]]
    draw_img = draw_ocr_box_txt(
        image,
        boxes,
        txts,
        scores,
        drop_score=rec_drop_score,
        font_path=font_path,
    )
    mask = mask[0, 0, :, :] > mask_thresh
    return save_pred, elapse, draw_img, mask.astype('uint8') * 255


def get_all_file_names_including_subdirs(dir_path):
    all_file_names = []

    for root, dirs, files in os.walk(dir_path):
        for file_name in files:
            all_file_names.append(os.path.join(root, file_name))

    file_names_only = [os.path.basename(file) for file in all_file_names]
    return file_names_only


def list_image_paths(directory):
    image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff')

    image_paths = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.lower().endswith(image_extensions):
                relative_path = os.path.relpath(os.path.join(root, file),
                                                directory)
                full_path = os.path.join(directory, relative_path)
                image_paths.append(full_path)
    image_paths = sorted(image_paths)
    return image_paths


def find_file_in_current_dir_and_subdirs(file_name):
    for root, dirs, files in os.walk('.'):
        if file_name in files:
            relative_path = os.path.join(root, file_name)
            return relative_path


e2e_img_example = list_image_paths('./OCR_e2e_img')

if __name__ == '__main__':
    css = '.image-container img { width: 100%; max-height: 320px;}'

    with gr.Blocks(css=css) as demo:
        gr.HTML("""
                <h1 style='text-align: center;'><a href="https://github.com/Topdu/OpenOCR">OpenOCR</a></h1>
                <p style='text-align: center;'>A general OCR system with accuracy and efficiency (created by <a href="https://github.com/Topdu/OpenOCR">OCR Team</a>, <a href="https://fvl.fudan.edu.cn">FVL Lab</a>)</p>""")
        with gr.Row():
            with gr.Column(scale=1):
                input_image = gr.Image(label='Input image',
                                       elem_classes=['image-container'])

                examples = gr.Examples(examples=e2e_img_example,
                                       inputs=input_image,
                                       label='Examples')
                downstream = gr.Button('Run')

                with gr.Row():
                    with gr.Column():
                        rec_drop_score_slider = gr.Slider(
                            0.0,
                            1.0,
                            value=0.01,
                            step=0.01,
                            label="Recognition Drop Score",
                            info="Recognition confidence threshold, default value is 0.01. Recognition results and corresponding text boxes lower than this threshold are discarded.")
                        mask_thresh_slider = gr.Slider(
                            0.0,
                            1.0,
                            value=0.3,
                            step=0.01,
                            label="Mask Threshold",
                            info="Mask threshold for binarizing masks, defaults to 0.3, turn it down if there is text truncation.")
                    with gr.Column():
                        box_thresh_slider = gr.Slider(
                            0.0,
                            1.0,
                            value=0.6,
                            step=0.01,
                            label="Box Threshold",
                            info="Text Box Confidence Threshold, default value is 0.6, turn it down if there is text being missed.")
                        unclip_ratio_slider = gr.Slider(
                            1.5,
                            2.0,
                            value=1.5,
                            step=0.05,
                            label="Unclip Ratio",
                            info="Expansion factor for parsing text boxes, default value is 1.5. The larger the value, the larger the text box.")

                det_score_mode_dropdown = gr.Dropdown(
                    ["slow", "fast"],
                    value="slow",
                    label="Det Score Mode",
                    info="The confidence calculation mode of the text box, the default is slow. Slow mode is slower but more accurate. Fast mode is faster but less accurate."
                )

            with gr.Column(scale=1):
                img_mask = gr.Image(label='mask',
                                    interactive=False,
                                    elem_classes=['image-container'])
                img_output = gr.Image(label=' ',
                                      interactive=False,
                                      elem_classes=['image-container'])

                output = gr.Textbox(label='Result')
                confidence = gr.Textbox(label='Latency')

            downstream.click(fn=main,
                             inputs=[
                                 input_image, rec_drop_score_slider,
                                 mask_thresh_slider, box_thresh_slider,
                                 unclip_ratio_slider, det_score_mode_dropdown
                             ],
                             outputs=[
                                 output,
                                 confidence,
                                 img_output,
                                 img_mask,
                             ])

    demo.launch(share=True)