File size: 10,786 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# IGTR

- [IGTR](#igtr)
  - [1. Introduction](#1-introduction)
  - [2. Environment](#2-environment)
    - [Dataset Preparation](#dataset-preparation)
  - [3. Model Training / Evaluation](#3-model-training--evaluation)
  - [Citation](#citation)

<a name="1"></a>

## 1. Introduction

Paper:

> [Instruction-Guided Scene Text Recognition](https://arxiv.org/abs/2401.17851)
> Yongkun Du, Zhineng Chen, Yuchen Su, Caiyan Jia, Yu-Gang Jiang

<a name="model"></a>
Multi-modal models show appealing performance in visual recognition tasks recently, as free-form text-guided training evokes the ability to understand fine-grained visual content. However, current models are either inefficient or cannot be trivially upgraded to scene text recognition (STR) due to the composition difference between natural and text images. We propose a novel instruction-guided scene text recognition (IGTR) paradigm that formulates STR as an instruction learning problem and understands text images by predicting character attributes, e.g., character frequency, position, etc. IGTR first devises $\\left \\langle condition,question,answer\\right \\rangle$ instruction triplets, providing rich and diverse descriptions of character attributes. To effectively learn these attributes through question-answering, IGTR develops lightweight instruction encoder, cross-modal feature fusion module and multi-task answer head, which guides nuanced text image understanding. Furthermore, IGTR realizes different recognition pipelines simply by using different instructions, enabling a character-understanding-based text reasoning paradigm that considerably differs from current methods. Experiments on English and Chinese benchmarks show that IGTR outperforms existing models by significant margins, while maintaining a small model size and efficient inference speed. Moreover, by adjusting the sampling of instructions, IGTR offers an elegant way to tackle the recognition of both rarely appearing and morphologically similar characters, which were previous challenges.

<a name="model"></a>
The accuracy (%) and model files of IGTR on the public dataset of scene text recognition are as follows:

- Trained on Synth dataset(MJ+ST), test on Common Benchmarks, training and test datasets both from [PARSeq](https://github.com/baudm/parseq).

|  Model  | IC13<br/>857 | SVT  | IIIT5k<br/>3000 | IC15<br/>1811 | SVTP | CUTE80 |  Avg  |                                        Config&Model&Log                                         |
| :-----: | :----------: | :--: | :-------------: | :-----------: | :--: | :----: | :---: | :---------------------------------------------------------------------------------------------: |
| IGTR-PD |     97.6     | 95.2 |      97.6       |     88.4      | 91.6 |  95.5  | 94.30 | [link](https://drive.google.com/drive/folders/1Pv0CW2hiWC_dIyaB74W1fsXqiX3z5yXA?usp=drive_link) |
| IGTR-AR |     98.6     | 95.7 |      98.2       |     88.4      | 92.4 |  95.5  | 94.78 |                                            as above                                             |

- Test on Union14M-L benchmark, from [Union14M](https://github.com/Mountchicken/Union14M/).

|  Model  | Curve | Multi-<br/>Oriented | Artistic | Contextless | Salient | Multi-<br/>word | General |  Avg  |    Config&Model&Log     |
| :-----: | :---: | :-----------------: | :------: | :---------: | :-----: | :-------------: | :-----: | :---: | :---------------------: |
| IGTR-PD | 76.9  |        30.6         |   59.1   |    63.3     |  77.8   |      62.5       |  66.7   | 62.40 | Same as the above table |
| IGTR-AR | 78.4  |        31.9         |   61.3   |    66.5     |  80.2   |      69.3       |  67.9   | 65.07 |        as above         |

- Trained on Union14M-L training dataset.

|    Model     | IC13<br/>857 | SVT  | IIIT5k<br/>3000 | IC15<br/>1811 | SVTP | CUTE80 |  Avg  |                                        Config&Model&Log                                         |
| :----------: | :----------: | :--: | :-------------: | :-----------: | :--: | :----: | :---: | :---------------------------------------------------------------------------------------------: |
|   IGTR-PD    |     97.7     | 97.7 |      98.3       |     89.8      | 93.7 |  97.9  | 95.86 | [link](https://drive.google.com/drive/folders/1ZGlzDqEzjrBg8qG2wBkbOm3bLRzFbTzo?usp=drive_link) |
|   IGTR-AR    |     98.1     | 98.4 |      98.7       |     90.5      | 94.9 |  98.3  | 96.48 |                                            as above                                             |
| IGTR-PD-60ep |     97.9     | 98.3 |      99.2       |     90.8      | 93.7 |  97.6  | 96.24 | [link](https://drive.google.com/drive/folders/1ik4hxZDRsjU1RbCA19nwE45Kg1bCnMoa?usp=drive_link) |
| IGTR-AR-60ep |     98.4     | 98.1 |      99.3       |     91.5      | 94.3 |  97.6  | 96.54 |                                            as above                                             |
|  IGTR-PD-PT  |     98.6     | 98.0 |      99.1       |     91.7      | 96.8 |  99.0  | 97.20 | [link](https://drive.google.com/drive/folders/1QM0EWV66IfYI1G0Xm066V2zJA62hH6-1?usp=drive_link) |
|  IGTR-AR-PT  |     98.8     | 98.3 |      99.2       |     92.0      | 96.8 |  99.0  | 97.34 |                                            as above                                             |

|    Model     | Curve | Multi-<br/>Oriented | Artistic | Contextless | Salient | Multi-<br/>word | General |  Avg  |    Config&Model&Log     |
| :----------: | :---: | :-----------------: | :------: | :---------: | :-----: | :-------------: | :-----: | :---: | :---------------------: |
|   IGTR-PD    | 88.1  |        89.9         |   74.2   |    80.3     |  82.8   |      79.2       |  83.0   | 82.51 | Same as the above table |
|   IGTR-AR    | 90.4  |        91.2         |   77.0   |    82.4     |  84.7   |      84.0       |  84.4   | 84.86 |        as above         |
| IGTR-PD-60ep | 90.0  |        92.1         |   77.5   |    82.8     |  86.0   |      83.0       |  84.8   | 85.18 | Same as the above table |
| IGTR-AR-60ep | 91.0  |        93.0         |   78.7   |    84.6     |  87.3   |      84.8       |  85.6   | 86.43 |        as above         |
|  IGTR-PD-PT  | 92.4  |        92.1         |   80.7   |    83.6     |  87.7   |      86.9       |  85.0   | 86.92 | Same as the above table |
|  IGTR-AR-PT  | 93.0  |        92.9         |   81.3   |    83.4     |  88.6   |      88.7       |  85.6   | 87.65 |        as above         |

- Trained and test on Chinese dataset, from [Chinese Benckmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition).

|    Model    | Scene | Web  | Document | Handwriting |  Avg  |                                        Config&Model&Log                                         |
| :---------: | :---: | :--: | :------: | :---------: | :---: | :---------------------------------------------------------------------------------------------: |
|   IGTR-PD   | 73.1  | 74.8 |   98.6   |    52.5     | 74.75 |                                                                                                 |
|   IGTR-AR   | 75.1  | 76.4 |   98.7   |    55.3     | 76.37 |                                                                                                 |
| IGTR-PD-TS  | 73.5  | 75.9 |   98.7   |    54.5     | 75.65 | [link](https://drive.google.com/drive/folders/1H3VRdGHjhawd6fkSC-qlBzVzvYYTpHRg?usp=drive_link) |
| IGTR-AR-TS  | 75.6  | 77.0 |   98.8   |    57.3     | 77.17 |                                            as above                                             |
| IGTR-PD-Aug | 79.5  | 80.0 |   99.4   |    58.9     | 79.45 | [link](https://drive.google.com/drive/folders/1XFQkCILwcFwA7iYyQY9crnrouaI5sqcZ?usp=drive_link) |
| IGTR-AR-Aug | 82.0  | 81.7 |   99.5   |    63.8     | 81.74 |                                            as above                                             |

Download all Configs, Models, and Logs from [Google Drive](https://drive.google.com/drive/folders/1mSRDg9Mj5R6PspAdFGXZHDHTCQmjkd8d?usp=drive_link).

<a name="2"></a>

## 2. Environment

- [PyTorch](http://pytorch.org/) version >= 1.13.0
- Python version >= 3.7

```shell
git clone -b develop https://github.com/Topdu/OpenOCR.git
cd OpenOCR
# A100 Ubuntu 20.04 Cuda 11.8
conda create -n openocr python==3.8
conda activate openocr
conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt
```

#### Dataset Preparation

[English dataset download](https://github.com/baudm/parseq)

[Union14M-L download](https://github.com/Mountchicken/Union14M)

[Chinese dataset download](https://github.com/fudanvi/benchmarking-chinese-text-recognition#download)

The expected filesystem structure is as follows:

```
benchmark_bctr
β”œβ”€β”€ benchmark_bctr_test
β”‚   β”œβ”€β”€ document_test
β”‚   β”œβ”€β”€ handwriting_test
β”‚   β”œβ”€β”€ scene_test
β”‚   └── web_test
└── benchmark_bctr_train
    β”œβ”€β”€ document_train
    β”œβ”€β”€ handwriting_train
    β”œβ”€β”€ scene_train
    └── web_train
evaluation
β”œβ”€β”€ CUTE80
β”œβ”€β”€ IC13_857
β”œβ”€β”€ IC15_1811
β”œβ”€β”€ IIIT5k
β”œβ”€β”€ SVT
└── SVTP
OpenOCR
synth
β”œβ”€β”€ MJ
β”‚   β”œβ”€β”€ test
β”‚   β”œβ”€β”€ train
β”‚   └── val
└── ST
test # from PARSeq
β”œβ”€β”€ ArT
β”œβ”€β”€ COCOv1.4
β”œβ”€β”€ CUTE80
β”œβ”€β”€ IC13_1015
β”œβ”€β”€ IC13_1095
β”œβ”€β”€ IC13_857
β”œβ”€β”€ IC15_1811
β”œβ”€β”€ IC15_2077
β”œβ”€β”€ IIIT5k
β”œβ”€β”€ SVT
β”œβ”€β”€ SVTP
└── Uber
u14m # lmdb format
β”œβ”€β”€ artistic
β”œβ”€β”€ contextless
β”œβ”€β”€ curve
β”œβ”€β”€ general
β”œβ”€β”€ multi_oriented
β”œβ”€β”€ multi_words
└── salient
Union14M-LMDB-L # lmdb format
β”œβ”€β”€ train_challenging
β”œβ”€β”€ train_easy
β”œβ”€β”€ train_hard
β”œβ”€β”€ train_medium
└── train_normal
```

<a name="3"></a>

## 3. Model Training / Evaluation

Training:

```shell
# The configuration file is available from the link provided in the table above.
# Multi GPU training
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 tools/train_rec.py --c PATH/svtr_base_igtr_XXX.yml
```

Evaluation:

```shell
# The configuration file is available from the link provided in the table above.
# en
python tools/eval_rec_all_ratio.py --c PATH/svtr_base_igtr_syn.yml
# ch
python tools/eval_rec_all_ch.py --c PATH/svtr_base_igtr_ch_aug.yml
```

## Citation

```bibtex
@article{Du2024IGTR,
  title     = {Instruction-Guided Scene Text Recognition},
  author    = {Du, Yongkun and Chen, Zhineng and Su, Yuchen and Jia, Caiyan and Jiang, Yu-Gang},
  journal   = {CoRR},
  eprinttype = {arXiv},
  primaryClass={cs.CV},
  volume    = {abs/2401.17851},
  year      = {2024},
  url       = {https://arxiv.org/abs/2401.17851}
}
```