File size: 3,884 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Global:
  device: gpu
  epoch_num: 20
  log_smooth_window: 20
  print_batch_step: 10
  output_dir: ./output/rec/u14m_filter/focalsvtr_nrtr_maxrtio12
  save_epoch_step: 1
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 500]
  eval_epoch_step: [0, 1]
  cal_metric_during_train: True
  pretrained_model:
  checkpoints:
  use_tensorboard: false
  infer_img: ../ltb/img
  # for data or label process
  character_dict_path: &character_dict_path ./tools/utils/EN_symbol_dict.txt # 96en
  # ./tools/utils/ppocr_keys_v1.txt  # ch
  max_text_length: &max_text_length 25
  use_space_char: &use_space_char False
  save_res_path: ./output/rec/u14m_filter/predicts_focalsvtr_nrtr_maxrtio12.txt
  use_amp: True

Optimizer:
  name: AdamW
  lr: 0.00065 # for 4gpus bs256/gpu
  weight_decay: 0.05
  filter_bias_and_bn: True

LRScheduler:
  name: OneCycleLR
  warmup_epoch: 1.5 # pct_start 0.075*20 = 1.5ep
  cycle_momentum: False

Architecture:
  model_type: rec
  algorithm: NRTR
  in_channels: 3
  Transform:
  Encoder:
    name: FocalSVTR
    img_size: [32, 128]
    depths: [6, 6, 6]
    embed_dim: 96
    sub_k: [[1, 1], [2, 1], [1, 1]]
    focal_levels: [3, 3, 3]
    last_stage: False
  Decoder:
    name: NRTRDecoder
    num_encoder_layers: -1
    beam_size: 0
    num_decoder_layers: 2
    nhead: 12
    max_len: *max_text_length

Loss:
  name: ARLoss

PostProcess:
  name: ARLabelDecode
  character_dict_path: *character_dict_path
  use_space_char: *use_space_char

Metric:
  name: RecMetric
  main_indicator: acc
  is_filter: True

Train:
  dataset:
    name: RatioDataSet
    ds_width: True
    padding: &padding True
    padding_rand: True
    padding_doub: True
    data_dir_list: ['../Union14M-L-LMDB-Filtered/filter_train_challenging',
    '../Union14M-L-LMDB-Filtered/filter_train_hard',
    '../Union14M-L-LMDB-Filtered/filter_train_medium',
    '../Union14M-L-LMDB-Filtered/filter_train_normal',
    '../Union14M-L-LMDB-Filtered/filter_train_easy',
    ]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - PARSeqAug:
      - ARLabelEncode: # Class handling label
          character_dict_path: *character_dict_path
          use_space_char: *use_space_char
          max_text_length: *max_text_length
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  sampler:
    name: RatioSampler
    scales: [[128, 32]] # w, h
    # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
    first_bs: &bs 256
    fix_bs: false
    divided_factor: [4, 16] # w, h
    is_training: True
  loader:
    shuffle: True
    batch_size_per_card: *bs
    drop_last: True
    max_ratio: &max_ratio 12
    num_workers: 4

Eval:
  dataset:
    name: RatioDataSet
    ds_width: True
    padding: False
    padding_rand: False
    data_dir_list: [
      '../evaluation/CUTE80',
      '../evaluation/IC13_857',
      '../evaluation/IC15_1811',
      '../evaluation/IIIT5k',
      '../evaluation/SVT',
      '../evaluation/SVTP',
      ]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - ARLabelEncode: # Class handling label
          character_dict_path: *character_dict_path
          use_space_char: *use_space_char
          max_text_length: *max_text_length
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  sampler:
    name: RatioSampler
    scales: [[128, 32]] # w, h
    # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
    first_bs: 128
    fix_bs: false
    divided_factor: [4, 16] # w, h
    is_training: False
  loader:
    shuffle: False
    drop_last: False
    max_ratio: *max_ratio
    batch_size_per_card: 128
    num_workers: 4