File size: 5,476 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import string

import numpy as np
from rapidfuzz.distance import Levenshtein

from .rec_metric import stream_match

# f_pred = open('pred_focal_subs_rand1_h2_bi_first.txt', 'w')


class RecMetricLong(object):

    def __init__(self,
                 main_indicator='acc',
                 is_filter=False,
                 ignore_space=True,
                 stream=False,
                 **kwargs):
        self.main_indicator = main_indicator
        self.is_filter = is_filter
        self.ignore_space = ignore_space
        self.stream = stream
        self.eps = 1e-5
        self.max_len = 201
        self.reset()

    def _normalize_text(self, text):
        text = ''.join(
            filter(lambda x: x in (string.digits + string.ascii_letters),
                   text))
        return text.lower()

    def __call__(self, pred_label, *args, **kwargs):
        preds, labels = pred_label
        correct_num = 0
        correct_num_slice = 0
        f_l_acc = 0
        all_num = 0
        norm_edit_dis = 0.0
        len_acc = 0
        each_len_num = [0 for _ in range(self.max_len)]
        each_len_correct_num = [0 for _ in range(self.max_len)]
        each_len_norm_edit_dis = [0 for _ in range(self.max_len)]
        for (pred, pred_conf), (target, _) in zip(preds, labels):
            if self.stream:
                assert len(labels) == 1
                pred, _ = stream_match(preds)
            if self.ignore_space:
                pred = pred.replace(' ', '')
                target = target.replace(' ', '')
            if self.is_filter:
                pred = self._normalize_text(pred)
                target = self._normalize_text(target)
            dis = Levenshtein.normalized_distance(pred, target)
            norm_edit_dis += dis
            # print(pred, target)
            if pred == target:
                correct_num += 1
                each_len_correct_num[len(target)] += 1
            each_len_num[len(target)] += 1
            each_len_norm_edit_dis[len(target)] += dis
            #     f_pred.write(pred+'\t'+target+'\t1'+'\n')
            #     print(pred, target, 1)
            # else:
            #     f_pred.write(pred+'\t'+target+'\t0'+'\n')
            #     print(pred, target, 0)
            if len(pred) >= 1 and len(target) >= 1:
                if pred[0] == target[0] and pred[-1] == target[-1]:
                    f_l_acc += 1
            if len(pred) == len(target):
                len_acc += 1
            if pred == target[:len(pred)]:
                # if pred == target[-len(pred):]:
                correct_num_slice += 1
            all_num += 1
        self.correct_num += correct_num
        self.correct_num_slice += correct_num_slice
        self.f_l_acc += f_l_acc
        self.all_num += all_num
        self.len_acc += len_acc
        self.each_len_num = self.each_len_num + np.array(each_len_num)
        self.each_len_correct_num = self.each_len_correct_num + np.array(
            each_len_correct_num)
        self.each_len_norm_edit_dis = self.each_len_norm_edit_dis + np.array(
            each_len_norm_edit_dis)
        self.norm_edit_dis += norm_edit_dis
        return {
            'acc': correct_num / (all_num + self.eps),
            'norm_edit_dis': 1 - norm_edit_dis / (all_num + self.eps),
        }

    def get_metric(self):
        """
        return metrics {
                 'acc': 0,
                 'norm_edit_dis': 0,
            }
        """
        acc = 1.0 * self.correct_num / (self.all_num + self.eps)
        acc_slice = 1.0 * self.correct_num_slice / (self.all_num + self.eps)
        f_l_acc = 1.0 * self.f_l_acc / (self.all_num + self.eps)
        len_acc = 1.0 * self.len_acc / (self.all_num + self.eps)
        norm_edit_dis = 1 - self.norm_edit_dis / (self.all_num + self.eps)
        each_len_acc = (self.each_len_correct_num /
                        (self.each_len_num + self.eps)).tolist()
        # each_len_acc_25 = each_len_acc[:26]
        # each_len_acc_26 = each_len_acc[26:]
        each_len_norm_edit_dis = (1 -
                                  ((self.each_len_norm_edit_dis) /
                                   ((self.each_len_num) + self.eps))).tolist()
        # each_len_norm_edit_dis_25 = each_len_norm_edit_dis[:26]
        # each_len_norm_edit_dis_26 = each_len_norm_edit_dis[26:]
        each_len_num = self.each_len_num.tolist()
        all_num = self.all_num
        self.reset()
        return {
            'acc': acc,
            'norm_edit_dis': norm_edit_dis,
            'acc_slice': acc_slice,
            'f_l_acc': f_l_acc,
            'len_acc': len_acc,
            'each_len_num': each_len_num,
            'each_len_acc': each_len_acc,
            # "each_len_acc_25": each_len_acc_25,
            # "each_len_acc_26": each_len_acc_26,
            'each_len_norm_edit_dis': each_len_norm_edit_dis,
            # "each_len_norm_edit_dis_25":each_len_norm_edit_dis_25,
            # "each_len_norm_edit_dis_26":each_len_norm_edit_dis_26,
            'all_num': all_num
        }

    def reset(self):
        self.correct_num = 0
        self.all_num = 0
        self.norm_edit_dis = 0
        self.correct_num_slice = 0
        self.each_len_num = np.array([0 for _ in range(self.max_len)])
        self.each_len_correct_num = np.array([0 for _ in range(self.max_len)])
        self.each_len_norm_edit_dis = np.array(
            [0. for _ in range(self.max_len)])
        self.f_l_acc = 0
        self.len_acc = 0