Spaces:
Running
Running
File size: 10,301 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from openrec.modeling.decoders.nrtr_decoder import PositionalEncoding, TransformerBlock
class BCNLanguage(nn.Module):
def __init__(
self,
d_model=512,
nhead=8,
num_layers=4,
dim_feedforward=2048,
dropout=0.0,
max_length=25,
detach=True,
num_classes=37,
):
super().__init__()
self.d_model = d_model
self.detach = detach
self.max_length = max_length + 1
self.proj = nn.Linear(num_classes, d_model, False)
self.token_encoder = PositionalEncoding(dropout=0.1,
dim=d_model,
max_len=self.max_length)
self.pos_encoder = PositionalEncoding(dropout=0,
dim=d_model,
max_len=self.max_length)
self.decoder = nn.ModuleList([
TransformerBlock(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
attention_dropout_rate=dropout,
residual_dropout_rate=dropout,
with_self_attn=False,
with_cross_attn=True,
) for i in range(num_layers)
])
self.cls = nn.Linear(d_model, num_classes)
def forward(self, tokens, lengths):
"""
Args:
tokens: (N, T, C) where T is length, N is batch size and C is classes number
lengths: (N,)
"""
if self.detach:
tokens = tokens.detach()
embed = self.proj(tokens) # (N, T, E)
embed = self.token_encoder(embed) # (N, T, E)
mask = _get_mask(lengths, self.max_length) # (N, 1, T, T)
zeros = embed.new_zeros(*embed.shape)
qeury = self.pos_encoder(zeros)
for decoder_layer in self.decoder:
qeury = decoder_layer(qeury, embed, cross_mask=mask)
output = qeury # (N, T, E)
logits = self.cls(output) # (N, T, C)
return output, logits
def encoder_layer(in_c, out_c, k=3, s=2, p=1):
return nn.Sequential(nn.Conv2d(in_c, out_c, k, s, p),
nn.BatchNorm2d(out_c), nn.ReLU(True))
class DecoderUpsample(nn.Module):
def __init__(self, in_c, out_c, k=3, s=1, p=1, mode='nearest') -> None:
super().__init__()
self.align_corners = None if mode == 'nearest' else True
self.mode = mode
# nn.Upsample(size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners),
self.w = nn.Sequential(
nn.Conv2d(in_c, out_c, k, s, p),
nn.BatchNorm2d(out_c),
nn.ReLU(True),
)
def forward(self, x, size):
x = F.interpolate(x,
size=size,
mode=self.mode,
align_corners=self.align_corners)
return self.w(x)
class PositionAttention(nn.Module):
def __init__(self,
max_length,
in_channels=512,
num_channels=64,
mode='nearest',
**kwargs):
super().__init__()
self.max_length = max_length
self.k_encoder = nn.Sequential(
encoder_layer(in_channels, num_channels, s=(1, 2)),
encoder_layer(num_channels, num_channels, s=(2, 2)),
encoder_layer(num_channels, num_channels, s=(2, 2)),
encoder_layer(num_channels, num_channels, s=(2, 2)),
)
self.k_decoder = nn.ModuleList([
DecoderUpsample(num_channels, num_channels, mode=mode),
DecoderUpsample(num_channels, num_channels, mode=mode),
DecoderUpsample(num_channels, num_channels, mode=mode),
DecoderUpsample(num_channels, in_channels, mode=mode),
])
self.pos_encoder = PositionalEncoding(dropout=0,
dim=in_channels,
max_len=max_length)
self.project = nn.Linear(in_channels, in_channels)
def forward(self, x, query=None):
N, E, H, W = x.size()
k, v = x, x # (N, E, H, W)
# calculate key vector
features = []
size_decoder = []
for i in range(0, len(self.k_encoder)):
size_decoder.append(k.shape[2:])
k = self.k_encoder[i](k)
features.append(k)
for i in range(0, len(self.k_decoder) - 1):
k = self.k_decoder[i](k, size=size_decoder[-(i + 1)])
k = k + features[len(self.k_decoder) - 2 - i]
k = self.k_decoder[-1](k, size=size_decoder[0]) # (N, E, H, W)
# calculate query vector
# TODO q=f(q,k)
zeros = x.new_zeros(
(N, self.max_length, E)) if query is None else query # (N, T, E)
q = self.pos_encoder(zeros) # (N, T, E)
q = self.project(q) # (N, T, E)
# calculate attention
attn_scores = torch.bmm(q, k.flatten(2, 3)) # (N, T, (H*W))
attn_scores = attn_scores / (E**0.5)
attn_scores = F.softmax(attn_scores, dim=-1)
# (N, E, H, W) -> (N, H, W, E) -> (N, (H*W), E)
v = v.permute(0, 2, 3, 1).view(N, -1, E) # (N, (H*W), E)
attn_vecs = torch.bmm(attn_scores, v) # (N, T, E)
return attn_vecs, attn_scores.view(N, -1, H, W)
class ABINetDecoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
nhead=8,
num_layers=3,
dim_feedforward=2048,
dropout=0.1,
max_length=25,
iter_size=3,
**kwargs):
super().__init__()
self.max_length = max_length + 1
d_model = in_channels
self.pos_encoder = PositionalEncoding(dropout=0.1, dim=d_model)
self.encoder = nn.ModuleList([
TransformerBlock(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
attention_dropout_rate=dropout,
residual_dropout_rate=dropout,
with_self_attn=True,
with_cross_attn=False,
) for _ in range(num_layers)
])
self.decoder = PositionAttention(
max_length=self.max_length, # additional stop token
in_channels=d_model,
num_channels=d_model // 8,
mode='nearest',
)
self.out_channels = out_channels
self.cls = nn.Linear(d_model, self.out_channels)
self.iter_size = iter_size
if iter_size > 0:
self.language = BCNLanguage(
d_model=d_model,
nhead=nhead,
num_layers=4,
dim_feedforward=dim_feedforward,
dropout=dropout,
max_length=max_length,
num_classes=self.out_channels,
)
# alignment
self.w_att_align = nn.Linear(2 * d_model, d_model)
self.cls_align = nn.Linear(d_model, self.out_channels)
def forward(self, x, data=None):
# bs, c, h, w
x = x.permute([0, 2, 3, 1]) # bs, h, w, c
_, H, W, C = x.shape
# assert H % 8 == 0 and W % 16 == 0, 'The height and width should be multiples of 8 and 16.'
feature = x.flatten(1, 2) # bs, h*w, c
feature = self.pos_encoder(feature) # bs, h*w, c
for encoder_layer in self.encoder:
feature = encoder_layer(feature)
# bs, h*w, c
feature = feature.reshape([-1, H, W, C]).permute(0, 3, 1,
2) # bs, c, h, w
v_feature, _ = self.decoder(feature) # (bs[N], T, E)
vis_logits = self.cls(v_feature) # (bs[N], T, E)
align_lengths = _get_length(vis_logits)
align_logits = vis_logits
all_l_res, all_a_res = [], []
for _ in range(self.iter_size):
tokens = F.softmax(align_logits, dim=-1)
lengths = torch.clamp(
align_lengths, 2,
self.max_length) # TODO: move to language model
l_feature, l_logits = self.language(tokens, lengths)
# alignment
all_l_res.append(l_logits)
fuse = torch.cat((l_feature, v_feature), -1)
f_att = torch.sigmoid(self.w_att_align(fuse))
output = f_att * v_feature + (1 - f_att) * l_feature
align_logits = self.cls_align(output)
align_lengths = _get_length(align_logits)
all_a_res.append(align_logits)
if self.training:
return {
'align': all_a_res,
'lang': all_l_res,
'vision': vis_logits
}
else:
return F.softmax(align_logits, -1)
def _get_length(logit):
"""Greed decoder to obtain length from logit."""
out = logit.argmax(dim=-1) == 0
non_zero_mask = out.int() != 0
mask_max_values, mask_max_indices = torch.max(non_zero_mask.int(), dim=-1)
mask_max_indices[mask_max_values == 0] = -1
out = mask_max_indices + 1
return out
def _get_mask(length, max_length):
"""Generate a square mask for the sequence.
The masked positions are filled with float('-inf'). Unmasked positions are
filled with float(0.0).
"""
length = length.unsqueeze(-1)
N = length.size(0)
grid = torch.arange(0, max_length, device=length.device).unsqueeze(0)
zero_mask = torch.zeros([N, max_length],
dtype=torch.float32,
device=length.device)
inf_mask = torch.full([N, max_length],
float('-inf'),
dtype=torch.float32,
device=length.device)
diag_mask = torch.diag(
torch.full([max_length],
float('-inf'),
dtype=torch.float32,
device=length.device),
diagonal=0,
)
mask = torch.where(grid >= length, inf_mask, zero_mask)
mask = mask.unsqueeze(1) + diag_mask
return mask.unsqueeze(1)
|