File size: 5,983 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import init


class Embedding(nn.Module):

    def __init__(self, in_timestep, in_planes, mid_dim=4096, embed_dim=300):
        super(Embedding, self).__init__()
        self.in_timestep = in_timestep
        self.in_planes = in_planes
        self.embed_dim = embed_dim
        self.mid_dim = mid_dim
        self.eEmbed = nn.Linear(
            in_timestep * in_planes,
            self.embed_dim)  # Embed encoder output to a word-embedding like

    def forward(self, x):
        x = x.flatten(1)
        x = self.eEmbed(x)
        return x


class Attn_Rnn_Block(nn.Module):

    def __init__(self, featdim, hiddendim, embedding_dim, out_channels,
                 attndim):
        super(Attn_Rnn_Block, self).__init__()

        self.attndim = attndim
        self.embedding_dim = embedding_dim
        self.feat_embed = nn.Linear(featdim, attndim)
        self.hidden_embed = nn.Linear(hiddendim, attndim)
        self.attnfeat_embed = nn.Linear(attndim, 1)
        self.gru = nn.GRU(input_size=featdim + self.embedding_dim,
                          hidden_size=hiddendim,
                          batch_first=True)
        self.fc = nn.Linear(hiddendim, out_channels)
        self.init_weights()

    def init_weights(self):
        init.normal_(self.hidden_embed.weight, std=0.01)
        init.constant_(self.hidden_embed.bias, 0)
        init.normal_(self.attnfeat_embed.weight, std=0.01)
        init.constant_(self.attnfeat_embed.bias, 0)

    def _attn(self, feat, h_state):
        b, t, _ = feat.shape
        feat = self.feat_embed(feat)
        h_state = self.hidden_embed(h_state.squeeze(0)).unsqueeze(1)
        h_state = h_state.expand(b, t, self.attndim)
        sumTanh = torch.tanh(feat + h_state)
        attn_w = self.attnfeat_embed(sumTanh).squeeze(-1)
        attn_w = F.softmax(attn_w, dim=1).unsqueeze(1)
        # [B,1,25]
        return attn_w

    def forward(self, feat, h_state, label_input):

        attn_w = self._attn(feat, h_state)

        attn_feat = attn_w @ feat
        attn_feat = attn_feat.squeeze(1)

        output, h_state = self.gru(
            torch.cat([label_input, attn_feat], 1).unsqueeze(1), h_state)
        pred = self.fc(output)

        return pred, h_state


class ASTERDecoder(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 embedding_dim=256,
                 hiddendim=256,
                 attndim=256,
                 max_len=25,
                 seed=False,
                 time_step=32,
                 **kwargs):
        super(ASTERDecoder, self).__init__()
        self.num_classes = out_channels
        self.bos = out_channels - 2
        self.eos = 0
        self.padding_idx = out_channels - 1
        self.seed = seed
        if seed:
            self.embeder = Embedding(
                in_timestep=time_step,
                in_planes=in_channels,
            )
        self.word_embedding = nn.Embedding(self.num_classes,
                                           embedding_dim,
                                           padding_idx=self.padding_idx)

        self.attndim = attndim
        self.hiddendim = hiddendim
        self.max_seq_len = max_len + 1

        self.featdim = in_channels

        self.attn_rnn_block = Attn_Rnn_Block(
            featdim=self.featdim,
            hiddendim=hiddendim,
            embedding_dim=embedding_dim,
            out_channels=out_channels - 2,
            attndim=attndim,
        )
        self.embed_fc = nn.Linear(300, self.hiddendim)

    def get_initial_state(self, embed, tile_times=1):
        assert embed.shape[1] == 300
        state = self.embed_fc(embed)  # N * sDim
        if tile_times != 1:
            state = state.unsqueeze(1)
            trans_state = state.transpose(0, 1)
            state = trans_state.tile([tile_times, 1, 1])
            trans_state = state.transpose(0, 1)
            state = trans_state.reshape(-1, self.hiddendim)
        state = state.unsqueeze(0)  # 1 * N * sDim
        return state

    def forward(self, feat, data=None):
        # b,25,512
        b = feat.size(0)
        if self.seed:
            embedding_vectors = self.embeder(feat)
            h_state = self.get_initial_state(embedding_vectors)
        else:
            h_state = torch.zeros(1, b, self.hiddendim).to(feat.device)
        outputs = []
        if self.training:
            label = data[0]
            label_embedding = self.word_embedding(label)  # [B,25,256]
            tokens = label_embedding[:, 0, :]
            max_len = data[1].max() + 1
        else:
            tokens = torch.full([b, 1],
                                self.bos,
                                device=feat.device,
                                dtype=torch.long)
            tokens = self.word_embedding(tokens.squeeze(1))
            max_len = self.max_seq_len
        pred, h_state = self.attn_rnn_block(feat, h_state, tokens)
        outputs.append(pred)

        dec_seq = torch.full((feat.shape[0], max_len),
                             self.padding_idx,
                             dtype=torch.int64,
                             device=feat.get_device())
        dec_seq[:, :1] = torch.argmax(pred, dim=-1)
        for i in range(1, max_len):
            if not self.training:
                max_idx = torch.argmax(pred, dim=-1).squeeze(1)
                tokens = self.word_embedding(max_idx)
                dec_seq[:, i] = max_idx
                if (dec_seq == self.eos).any(dim=-1).all():
                    break
            else:
                tokens = label_embedding[:, i, :]
            pred, h_state = self.attn_rnn_block(feat, h_state, tokens)
            outputs.append(pred)
        preds = torch.cat(outputs, 1)
        if self.seed and self.training:
            return [embedding_vectors, preds]
        return preds if self.training else F.softmax(preds, -1)