File size: 13,578 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import ones_, trunc_normal_, zeros_

from openrec.modeling.common import DropPath, Identity, Mlp
from openrec.modeling.decoders.nrtr_decoder import Embeddings


class Attention(nn.Module):

    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, q, kv, key_mask=None):
        N, C = kv.shape[1:]
        QN = q.shape[1]
        q = self.q(q).reshape([-1, QN, self.num_heads,
                               C // self.num_heads]).transpose(1, 2)
        q = q * self.scale
        k, v = self.kv(kv).reshape(
            [-1, N, 2, self.num_heads,
             C // self.num_heads]).permute(2, 0, 3, 1, 4)

        attn = q.matmul(k.transpose(2, 3))

        if key_mask is not None:
            attn = attn + key_mask.unsqueeze(1)

        attn = F.softmax(attn, -1)
        # if not self.training:
        #     self.attn_map = attn
        attn = self.attn_drop(attn)

        x = (attn.matmul(v)).transpose(1, 2).reshape((-1, QN, C))
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class EdgeDecoderLayer(nn.Module):

    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=[0.0, 0.0],
        act_layer=nn.GELU,
        norm_layer='nn.LayerNorm',
        epsilon=1e-6,
    ):
        super().__init__()

        self.head_dim = dim // num_heads
        self.scale = qk_scale or self.head_dim**-0.5

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path1 = DropPath(
            drop_path[0]) if drop_path[0] > 0.0 else Identity()
        self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
        self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)

        self.p = nn.Linear(dim, dim)
        self.cv = nn.Linear(dim, dim)
        self.pv = nn.Linear(dim, dim)

        self.dim = dim
        self.num_heads = num_heads
        self.p_proj = nn.Linear(dim, dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp_ratio = mlp_ratio
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

    def forward(self, p, cv, pv):
        pN = p.shape[1]
        vN = cv.shape[1]
        p_shortcut = p

        p1 = self.p(p).reshape(
            [-1, pN, self.num_heads,
             self.dim // self.num_heads]).transpose(1, 2)
        cv1 = self.cv(cv).reshape(
            [-1, vN, self.num_heads,
             self.dim // self.num_heads]).transpose(1, 2)
        pv1 = self.pv(pv).reshape(
            [-1, vN, self.num_heads,
             self.dim // self.num_heads]).transpose(1, 2)

        edge = F.softmax(p1.matmul(pv1.transpose(2, 3)), -1)  # B h N N

        p_c = (edge @ cv1).transpose(1, 2).reshape((-1, pN, self.dim))

        x1 = self.norm1(p_shortcut + self.drop_path1(self.p_proj(p_c)))

        x = self.norm2(x1 + self.drop_path1(self.mlp(x1)))
        return x


class DecoderLayer(nn.Module):

    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        epsilon=1e-6,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim, eps=epsilon)
        self.mixer = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
        )

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
        self.norm2 = norm_layer(dim, eps=epsilon)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp_ratio = mlp_ratio
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

    def forward(self, q, kv, key_mask=None):
        x1 = self.norm1(q + self.drop_path(self.mixer(q, kv, key_mask)))
        x = self.norm2(x1 + self.drop_path(self.mlp(x1)))
        return x


class CPPDDecoder(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 num_layer=2,
                 drop_path_rate=0.1,
                 max_len=25,
                 vis_seq=50,
                 iters=1,
                 pos_len=False,
                 ch=False,
                 rec_layer=1,
                 num_heads=None,
                 ds=False,
                 **kwargs):
        super(CPPDDecoder, self).__init__()

        self.out_channels = out_channels  # none + 26 + 10
        dim = in_channels
        self.dim = dim
        self.iters = iters
        self.max_len = max_len + 1  # max_len + eos
        self.pos_len = pos_len
        self.ch = ch
        self.char_node_embed = Embeddings(d_model=dim,
                                          vocab=self.out_channels,
                                          scale_embedding=True)
        self.pos_node_embed = Embeddings(d_model=dim,
                                         vocab=self.max_len,
                                         scale_embedding=True)
        dpr = np.linspace(0, drop_path_rate, num_layer + rec_layer)

        self.char_node_decoder = nn.ModuleList([
            DecoderLayer(
                dim=dim,
                num_heads=dim // 32 if num_heads is None else num_heads,
                mlp_ratio=4.0,
                qkv_bias=True,
                drop_path=dpr[i],
            ) for i in range(num_layer)
        ])
        self.pos_node_decoder = nn.ModuleList([
            DecoderLayer(
                dim=dim,
                num_heads=dim // 32 if num_heads is None else num_heads,
                mlp_ratio=4.0,
                qkv_bias=True,
                drop_path=dpr[i],
            ) for i in range(num_layer)
        ])

        self.edge_decoder = nn.ModuleList([
            DecoderLayer(
                dim=dim,
                num_heads=dim // 32 if num_heads is None else num_heads,
                mlp_ratio=4.0,
                qkv_bias=True,
                qk_scale=1.0 if (rec_layer + i) % 2 != 0 else None,
                drop_path=dpr[num_layer + i],
            ) for i in range(rec_layer)
        ])
        self.rec_layer_num = rec_layer
        self_mask = torch.tril(
            torch.ones([self.max_len, self.max_len], dtype=torch.float32))
        self_mask = torch.where(
            self_mask > 0,
            torch.zeros_like(self_mask, dtype=torch.float32),
            torch.full([self.max_len, self.max_len],
                       float('-inf'),
                       dtype=torch.float32),
        )
        self.self_mask = self_mask.unsqueeze(0)
        self.char_pos_embed = nn.Parameter(torch.zeros([1, self.max_len, dim],
                                                       dtype=torch.float32),
                                           requires_grad=True)
        self.ds = ds
        if not self.ds:
            self.vis_pos_embed = nn.Parameter(torch.zeros([1, vis_seq, dim],
                                                          dtype=torch.float32),
                                              requires_grad=True)
            trunc_normal_(self.vis_pos_embed, std=0.02)
        self.char_node_fc1 = nn.Linear(dim, max_len)

        self.pos_node_fc1 = nn.Linear(dim, self.max_len)

        self.edge_fc = nn.Linear(dim, self.out_channels)

        trunc_normal_(self.char_pos_embed, std=0.02)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
            'char_pos_embed', 'vis_pos_embed', 'char_node_embed',
            'pos_node_embed'
        }

    def forward(self, x, data=None):
        if self.training:
            return self.forward_train(x, data)
        else:
            return self.forward_test(x)

    def forward_test(self, x):
        if not self.ds:
            visual_feats = x + self.vis_pos_embed
        else:
            visual_feats = x
        bs = visual_feats.shape[0]

        pos_node_embed = self.pos_node_embed(
            torch.arange(self.max_len).cuda(
                x.get_device())).unsqueeze(0) + self.char_pos_embed
        pos_node_embed = torch.tile(pos_node_embed, [bs, 1, 1])

        char_vis_node_query = visual_feats
        pos_vis_node_query = torch.concat([pos_node_embed, visual_feats], 1)

        for char_decoder_layer, pos_decoder_layer in zip(
                self.char_node_decoder, self.pos_node_decoder):
            char_vis_node_query = char_decoder_layer(char_vis_node_query,
                                                     char_vis_node_query)
            pos_vis_node_query = pos_decoder_layer(
                pos_vis_node_query, pos_vis_node_query[:, self.max_len:, :])

        pos_node_query = pos_vis_node_query[:, :self.max_len, :]

        char_vis_feats = char_vis_node_query
        # pos_vis_feats = pos_vis_node_query[:, self.max_len :, :]

        # pos_node_feats = self.edge_decoder(
        #     pos_node_query, char_vis_feats, pos_vis_feats
        # )  # B, 26, dim

        pos_node_feats = pos_node_query
        for layer_i in range(self.rec_layer_num):
            rec_layer = self.edge_decoder[layer_i]
            if (self.rec_layer_num + layer_i) % 2 == 0:
                pos_node_feats = rec_layer(pos_node_feats, pos_node_feats,
                                           self.self_mask)
            else:
                pos_node_feats = rec_layer(pos_node_feats, char_vis_feats)
        edge_feats = self.edge_fc(pos_node_feats)  # B, 26, 37

        edge_logits = F.softmax(
            edge_feats,
            -1)  # * F.sigmoid(pos_node_feats1.unsqueeze(-1))  # B, 26, 37

        return edge_logits

    def forward_train(self, x, targets=None):
        if not self.ds:
            visual_feats = x + self.vis_pos_embed
        else:
            visual_feats = x
        bs = visual_feats.shape[0]

        if self.ch:
            char_node_embed = self.char_node_embed(targets[-2])
        else:
            char_node_embed = self.char_node_embed(
                torch.arange(self.out_channels).cuda(
                    x.get_device())).unsqueeze(0)
            char_node_embed = torch.tile(char_node_embed, [bs, 1, 1])
        counting_char_num = char_node_embed.shape[1]
        pos_node_embed = self.pos_node_embed(
            torch.arange(self.max_len).cuda(
                x.get_device())).unsqueeze(0) + self.char_pos_embed
        pos_node_embed = torch.tile(pos_node_embed, [bs, 1, 1])

        node_feats = []

        char_vis_node_query = torch.concat([char_node_embed, visual_feats], 1)
        pos_vis_node_query = torch.concat([pos_node_embed, visual_feats], 1)

        for char_decoder_layer, pos_decoder_layer in zip(
                self.char_node_decoder, self.pos_node_decoder):
            char_vis_node_query = char_decoder_layer(
                char_vis_node_query,
                char_vis_node_query[:, counting_char_num:, :])
            pos_vis_node_query = pos_decoder_layer(
                pos_vis_node_query, pos_vis_node_query[:, self.max_len:, :])

        char_node_query = char_vis_node_query[:, :counting_char_num, :]
        pos_node_query = pos_vis_node_query[:, :self.max_len, :]

        char_vis_feats = char_vis_node_query[:, counting_char_num:, :]

        char_node_feats1 = self.char_node_fc1(char_node_query)
        pos_node_feats1 = self.pos_node_fc1(pos_node_query)
        if not self.pos_len:
            diag_mask = torch.eye(pos_node_feats1.shape[1]).unsqueeze(0).tile(
                [pos_node_feats1.shape[0], 1, 1])
            pos_node_feats1 = (
                pos_node_feats1 *
                diag_mask.cuda(pos_node_feats1.get_device())).sum(-1)

        node_feats.append(char_node_feats1)
        node_feats.append(pos_node_feats1)

        pos_node_feats = pos_node_query
        for layer_i in range(self.rec_layer_num):
            rec_layer = self.edge_decoder[layer_i]
            if (self.rec_layer_num + layer_i) % 2 == 0:
                pos_node_feats = rec_layer(pos_node_feats, pos_node_feats,
                                           self.self_mask)
            else:
                pos_node_feats = rec_layer(pos_node_feats, char_vis_feats)
        edge_feats = self.edge_fc(pos_node_feats)  # B, 26, 37

        return node_feats, edge_feats