Spaces:
Running
Running
File size: 13,578 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import ones_, trunc_normal_, zeros_
from openrec.modeling.common import DropPath, Identity, Mlp
from openrec.modeling.decoders.nrtr_decoder import Embeddings
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, q, kv, key_mask=None):
N, C = kv.shape[1:]
QN = q.shape[1]
q = self.q(q).reshape([-1, QN, self.num_heads,
C // self.num_heads]).transpose(1, 2)
q = q * self.scale
k, v = self.kv(kv).reshape(
[-1, N, 2, self.num_heads,
C // self.num_heads]).permute(2, 0, 3, 1, 4)
attn = q.matmul(k.transpose(2, 3))
if key_mask is not None:
attn = attn + key_mask.unsqueeze(1)
attn = F.softmax(attn, -1)
# if not self.training:
# self.attn_map = attn
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose(1, 2).reshape((-1, QN, C))
x = self.proj(x)
x = self.proj_drop(x)
return x
class EdgeDecoderLayer(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=[0.0, 0.0],
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
epsilon=1e-6,
):
super().__init__()
self.head_dim = dim // num_heads
self.scale = qk_scale or self.head_dim**-0.5
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path1 = DropPath(
drop_path[0]) if drop_path[0] > 0.0 else Identity()
self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
self.p = nn.Linear(dim, dim)
self.cv = nn.Linear(dim, dim)
self.pv = nn.Linear(dim, dim)
self.dim = dim
self.num_heads = num_heads
self.p_proj = nn.Linear(dim, dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp_ratio = mlp_ratio
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, p, cv, pv):
pN = p.shape[1]
vN = cv.shape[1]
p_shortcut = p
p1 = self.p(p).reshape(
[-1, pN, self.num_heads,
self.dim // self.num_heads]).transpose(1, 2)
cv1 = self.cv(cv).reshape(
[-1, vN, self.num_heads,
self.dim // self.num_heads]).transpose(1, 2)
pv1 = self.pv(pv).reshape(
[-1, vN, self.num_heads,
self.dim // self.num_heads]).transpose(1, 2)
edge = F.softmax(p1.matmul(pv1.transpose(2, 3)), -1) # B h N N
p_c = (edge @ cv1).transpose(1, 2).reshape((-1, pN, self.dim))
x1 = self.norm1(p_shortcut + self.drop_path1(self.p_proj(p_c)))
x = self.norm2(x1 + self.drop_path1(self.mlp(x1)))
return x
class DecoderLayer(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
epsilon=1e-6,
):
super().__init__()
self.norm1 = norm_layer(dim, eps=epsilon)
self.mixer = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
self.norm2 = norm_layer(dim, eps=epsilon)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp_ratio = mlp_ratio
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, q, kv, key_mask=None):
x1 = self.norm1(q + self.drop_path(self.mixer(q, kv, key_mask)))
x = self.norm2(x1 + self.drop_path(self.mlp(x1)))
return x
class CPPDDecoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
num_layer=2,
drop_path_rate=0.1,
max_len=25,
vis_seq=50,
iters=1,
pos_len=False,
ch=False,
rec_layer=1,
num_heads=None,
ds=False,
**kwargs):
super(CPPDDecoder, self).__init__()
self.out_channels = out_channels # none + 26 + 10
dim = in_channels
self.dim = dim
self.iters = iters
self.max_len = max_len + 1 # max_len + eos
self.pos_len = pos_len
self.ch = ch
self.char_node_embed = Embeddings(d_model=dim,
vocab=self.out_channels,
scale_embedding=True)
self.pos_node_embed = Embeddings(d_model=dim,
vocab=self.max_len,
scale_embedding=True)
dpr = np.linspace(0, drop_path_rate, num_layer + rec_layer)
self.char_node_decoder = nn.ModuleList([
DecoderLayer(
dim=dim,
num_heads=dim // 32 if num_heads is None else num_heads,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=dpr[i],
) for i in range(num_layer)
])
self.pos_node_decoder = nn.ModuleList([
DecoderLayer(
dim=dim,
num_heads=dim // 32 if num_heads is None else num_heads,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=dpr[i],
) for i in range(num_layer)
])
self.edge_decoder = nn.ModuleList([
DecoderLayer(
dim=dim,
num_heads=dim // 32 if num_heads is None else num_heads,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=1.0 if (rec_layer + i) % 2 != 0 else None,
drop_path=dpr[num_layer + i],
) for i in range(rec_layer)
])
self.rec_layer_num = rec_layer
self_mask = torch.tril(
torch.ones([self.max_len, self.max_len], dtype=torch.float32))
self_mask = torch.where(
self_mask > 0,
torch.zeros_like(self_mask, dtype=torch.float32),
torch.full([self.max_len, self.max_len],
float('-inf'),
dtype=torch.float32),
)
self.self_mask = self_mask.unsqueeze(0)
self.char_pos_embed = nn.Parameter(torch.zeros([1, self.max_len, dim],
dtype=torch.float32),
requires_grad=True)
self.ds = ds
if not self.ds:
self.vis_pos_embed = nn.Parameter(torch.zeros([1, vis_seq, dim],
dtype=torch.float32),
requires_grad=True)
trunc_normal_(self.vis_pos_embed, std=0.02)
self.char_node_fc1 = nn.Linear(dim, max_len)
self.pos_node_fc1 = nn.Linear(dim, self.max_len)
self.edge_fc = nn.Linear(dim, self.out_channels)
trunc_normal_(self.char_pos_embed, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
@torch.jit.ignore
def no_weight_decay(self):
return {
'char_pos_embed', 'vis_pos_embed', 'char_node_embed',
'pos_node_embed'
}
def forward(self, x, data=None):
if self.training:
return self.forward_train(x, data)
else:
return self.forward_test(x)
def forward_test(self, x):
if not self.ds:
visual_feats = x + self.vis_pos_embed
else:
visual_feats = x
bs = visual_feats.shape[0]
pos_node_embed = self.pos_node_embed(
torch.arange(self.max_len).cuda(
x.get_device())).unsqueeze(0) + self.char_pos_embed
pos_node_embed = torch.tile(pos_node_embed, [bs, 1, 1])
char_vis_node_query = visual_feats
pos_vis_node_query = torch.concat([pos_node_embed, visual_feats], 1)
for char_decoder_layer, pos_decoder_layer in zip(
self.char_node_decoder, self.pos_node_decoder):
char_vis_node_query = char_decoder_layer(char_vis_node_query,
char_vis_node_query)
pos_vis_node_query = pos_decoder_layer(
pos_vis_node_query, pos_vis_node_query[:, self.max_len:, :])
pos_node_query = pos_vis_node_query[:, :self.max_len, :]
char_vis_feats = char_vis_node_query
# pos_vis_feats = pos_vis_node_query[:, self.max_len :, :]
# pos_node_feats = self.edge_decoder(
# pos_node_query, char_vis_feats, pos_vis_feats
# ) # B, 26, dim
pos_node_feats = pos_node_query
for layer_i in range(self.rec_layer_num):
rec_layer = self.edge_decoder[layer_i]
if (self.rec_layer_num + layer_i) % 2 == 0:
pos_node_feats = rec_layer(pos_node_feats, pos_node_feats,
self.self_mask)
else:
pos_node_feats = rec_layer(pos_node_feats, char_vis_feats)
edge_feats = self.edge_fc(pos_node_feats) # B, 26, 37
edge_logits = F.softmax(
edge_feats,
-1) # * F.sigmoid(pos_node_feats1.unsqueeze(-1)) # B, 26, 37
return edge_logits
def forward_train(self, x, targets=None):
if not self.ds:
visual_feats = x + self.vis_pos_embed
else:
visual_feats = x
bs = visual_feats.shape[0]
if self.ch:
char_node_embed = self.char_node_embed(targets[-2])
else:
char_node_embed = self.char_node_embed(
torch.arange(self.out_channels).cuda(
x.get_device())).unsqueeze(0)
char_node_embed = torch.tile(char_node_embed, [bs, 1, 1])
counting_char_num = char_node_embed.shape[1]
pos_node_embed = self.pos_node_embed(
torch.arange(self.max_len).cuda(
x.get_device())).unsqueeze(0) + self.char_pos_embed
pos_node_embed = torch.tile(pos_node_embed, [bs, 1, 1])
node_feats = []
char_vis_node_query = torch.concat([char_node_embed, visual_feats], 1)
pos_vis_node_query = torch.concat([pos_node_embed, visual_feats], 1)
for char_decoder_layer, pos_decoder_layer in zip(
self.char_node_decoder, self.pos_node_decoder):
char_vis_node_query = char_decoder_layer(
char_vis_node_query,
char_vis_node_query[:, counting_char_num:, :])
pos_vis_node_query = pos_decoder_layer(
pos_vis_node_query, pos_vis_node_query[:, self.max_len:, :])
char_node_query = char_vis_node_query[:, :counting_char_num, :]
pos_node_query = pos_vis_node_query[:, :self.max_len, :]
char_vis_feats = char_vis_node_query[:, counting_char_num:, :]
char_node_feats1 = self.char_node_fc1(char_node_query)
pos_node_feats1 = self.pos_node_fc1(pos_node_query)
if not self.pos_len:
diag_mask = torch.eye(pos_node_feats1.shape[1]).unsqueeze(0).tile(
[pos_node_feats1.shape[0], 1, 1])
pos_node_feats1 = (
pos_node_feats1 *
diag_mask.cuda(pos_node_feats1.get_device())).sum(-1)
node_feats.append(char_node_feats1)
node_feats.append(pos_node_feats1)
pos_node_feats = pos_node_query
for layer_i in range(self.rec_layer_num):
rec_layer = self.edge_decoder[layer_i]
if (self.rec_layer_num + layer_i) % 2 == 0:
pos_node_feats = rec_layer(pos_node_feats, pos_node_feats,
self.self_mask)
else:
pos_node_feats = rec_layer(pos_node_feats, char_vis_feats)
edge_feats = self.edge_fc(pos_node_feats) # B, 26, 37
return node_feats, edge_feats
|