File size: 5,774 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
import torch.nn as nn
import torch.nn.functional as F

from openrec.modeling.encoders.svtrnet import (
    Block,
    ConvBNLayer,
    kaiming_normal_,
    trunc_normal_,
    zeros_,
    ones_,
)


class Swish(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x * F.sigmoid(x)


class EncoderWithSVTR(nn.Module):

    def __init__(
        self,
        in_channels,
        dims=64,  # XS
        depth=2,
        hidden_dims=120,
        use_guide=False,
        num_heads=8,
        qkv_bias=True,
        mlp_ratio=2.0,
        drop_rate=0.1,
        attn_drop_rate=0.1,
        drop_path=0.0,
        kernel_size=[3, 3],
        qk_scale=None,
        use_pool=True,
    ):
        super(EncoderWithSVTR, self).__init__()
        self.depth = depth
        self.use_guide = use_guide
        self.use_pool = use_pool
        self.conv1 = ConvBNLayer(
            in_channels,
            in_channels // 8,
            kernel_size=kernel_size,
            padding=[kernel_size[0] // 2, kernel_size[1] // 2],
            act=Swish,
            bias=False)
        self.conv2 = ConvBNLayer(in_channels // 8,
                                 hidden_dims,
                                 kernel_size=1,
                                 act=Swish,
                                 bias=False)

        self.svtr_block = nn.ModuleList([
            Block(
                dim=hidden_dims,
                num_heads=num_heads,
                mixer='Global',
                HW=None,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                act_layer=Swish,
                attn_drop=attn_drop_rate,
                drop_path=drop_path,
                norm_layer='nn.LayerNorm',
                eps=1e-05,
                prenorm=False,
            ) for i in range(depth)
        ])
        self.norm = nn.LayerNorm(hidden_dims, eps=1e-6)
        self.conv3 = ConvBNLayer(hidden_dims,
                                 in_channels,
                                 kernel_size=1,
                                 act=Swish,
                                 bias=False)
        # last conv-nxn, the input is concat of input tensor and conv3 output tensor
        self.conv4 = ConvBNLayer(
            2 * in_channels,
            in_channels // 8,
            kernel_size=kernel_size,
            padding=[kernel_size[0] // 2, kernel_size[1] // 2],
            act=Swish,
            bias=False)

        self.conv1x1 = ConvBNLayer(in_channels // 8,
                                   dims,
                                   kernel_size=1,
                                   act=Swish,
                                   bias=False)
        self.out_channels = dims
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, mean=0, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        if isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)
        if isinstance(m, nn.Conv2d):
            kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def pool_h_2(self, x):
        # x: B, C, H, W
        x = x.mean(dim=2, keepdim=True)
        x = F.avg_pool2d(x, kernel_size=(1, 2))
        return x  # B, C, 1, W//2

    def forward(self, x):

        if self.use_pool:
            x = self.pool_h_2(x)

        # for use guide
        if self.use_guide:
            z = x.detach()
        else:
            z = x
        # for short cut
        h = z
        # reduce dim
        z = self.conv1(z)
        z = self.conv2(z)
        # SVTR global block
        B, C, H, W = z.shape
        z = z.flatten(2).transpose(1, 2)
        for blk in self.svtr_block:
            z = blk(z)
        z = self.norm(z)
        # last stage
        z = z.reshape(-1, H, W, C).permute(0, 3, 1, 2)
        z = self.conv3(z)
        z = torch.concat((h, z), dim=1)
        z = self.conv1x1(self.conv4(z))
        return z


class CTCDecoder(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels=6625,
                 mid_channels=None,
                 return_feats=False,
                 svtr_encoder=None,
                 **kwargs):
        super(CTCDecoder, self).__init__()
        if svtr_encoder is not None:
            svtr_encoder['in_channels'] = in_channels
            self.svtr_encoder = EncoderWithSVTR(**svtr_encoder)
            in_channels = self.svtr_encoder.out_channels
        else:
            self.svtr_encoder = None
        if mid_channels is None:
            self.fc = nn.Linear(
                in_channels,
                out_channels,
            )
        else:
            self.fc1 = nn.Linear(
                in_channels,
                mid_channels,
            )
            self.fc2 = nn.Linear(
                mid_channels,
                out_channels,
            )

        self.out_channels = out_channels
        self.mid_channels = mid_channels
        self.return_feats = return_feats

    def forward(self, x, data=None):

        if self.svtr_encoder is not None:
            x = self.svtr_encoder(x)
            x = x.flatten(2).transpose(1, 2)

        if self.mid_channels is None:
            predicts = self.fc(x)
        else:
            x = self.fc1(x)
            predicts = self.fc2(x)

        if self.return_feats:
            result = (x, predicts)
        else:
            result = predicts

        if not self.training:
            predicts = F.softmax(predicts, dim=2)
            result = predicts

        return result