Spaces:
Running
Running
File size: 8,225 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import torch
import torch.nn as nn
import torch.nn.functional as F
class CAM(nn.Module):
'''
Convolutional Alignment Module
'''
# Current version only supports input whose size is a power of 2, such as 32, 64, 128 etc.
# You can adapt it to any input size by changing the padding or stride.
def __init__(self,
channels_list=[64, 128, 256, 512],
strides_list=[[2, 2], [1, 1], [1, 1]],
in_shape=[8, 32],
maxT=25,
depth=4,
num_channels=128):
super(CAM, self).__init__()
# cascade multiscale features
fpn = []
for i in range(1, len(channels_list)):
fpn.append(
nn.Sequential(
nn.Conv2d(channels_list[i - 1], channels_list[i], (3, 3),
(strides_list[i - 1][0], strides_list[i - 1][1]),
1), nn.BatchNorm2d(channels_list[i]),
nn.ReLU(True)))
self.fpn = nn.Sequential(*fpn)
# convolutional alignment
# convs
assert depth % 2 == 0, 'the depth of CAM must be a even number.'
# in_shape = scales[-1]
strides = []
conv_ksizes = []
deconv_ksizes = []
h, w = in_shape[0], in_shape[1]
for i in range(0, int(depth / 2)):
stride = [2] if 2**(depth / 2 - i) <= h else [1]
stride = stride + [2] if 2**(depth / 2 - i) <= w else stride + [1]
strides.append(stride)
conv_ksizes.append([3, 3])
deconv_ksizes.append([_**2 for _ in stride])
convs = [
nn.Sequential(
nn.Conv2d(channels_list[-1], num_channels,
tuple(conv_ksizes[0]), tuple(strides[0]),
(int((conv_ksizes[0][0] - 1) / 2),
int((conv_ksizes[0][1] - 1) / 2))),
nn.BatchNorm2d(num_channels), nn.ReLU(True))
]
for i in range(1, int(depth / 2)):
convs.append(
nn.Sequential(
nn.Conv2d(num_channels, num_channels,
tuple(conv_ksizes[i]), tuple(strides[i]),
(int((conv_ksizes[i][0] - 1) / 2),
int((conv_ksizes[i][1] - 1) / 2))),
nn.BatchNorm2d(num_channels), nn.ReLU(True)))
self.convs = nn.Sequential(*convs)
# deconvs
deconvs = []
for i in range(1, int(depth / 2)):
deconvs.append(
nn.Sequential(
nn.ConvTranspose2d(
num_channels, num_channels,
tuple(deconv_ksizes[int(depth / 2) - i]),
tuple(strides[int(depth / 2) - i]),
(int(deconv_ksizes[int(depth / 2) - i][0] / 4.),
int(deconv_ksizes[int(depth / 2) - i][1] / 4.))),
nn.BatchNorm2d(num_channels), nn.ReLU(True)))
deconvs.append(
nn.Sequential(
nn.ConvTranspose2d(num_channels, maxT, tuple(deconv_ksizes[0]),
tuple(strides[0]),
(int(deconv_ksizes[0][0] / 4.),
int(deconv_ksizes[0][1] / 4.))),
nn.Sigmoid()))
self.deconvs = nn.Sequential(*deconvs)
def forward(self, input):
x = input[0]
for i in range(0, len(self.fpn)):
# print(self.fpn[i](x).shape, input[i+1].shape)
x = self.fpn[i](x) + input[i + 1]
conv_feats = []
for i in range(0, len(self.convs)):
x = self.convs[i](x)
conv_feats.append(x)
for i in range(0, len(self.deconvs) - 1):
x = self.deconvs[i](x)
x = x + conv_feats[len(conv_feats) - 2 - i]
x = self.deconvs[-1](x)
return x
class CAMSimp(nn.Module):
def __init__(self, maxT=25, num_channels=128):
super(CAMSimp, self).__init__()
self.conv = nn.Sequential(nn.Conv2d(num_channels, maxT, 1, 1, 0),
nn.Sigmoid())
def forward(self, x):
x = self.conv(x)
return x
class DANDecoder(nn.Module):
'''
Decoupled Text Decoder
'''
def __init__(self,
out_channels,
in_channels,
use_cam=True,
max_len=25,
channels_list=[64, 128, 256, 512],
strides_list=[[2, 2], [1, 1], [1, 1]],
in_shape=[8, 32],
depth=4,
dropout=0.3,
**kwargs):
super(DANDecoder, self).__init__()
self.eos = 0
self.bos = out_channels - 2
self.ignore_index = out_channels - 1
nchannel = in_channels
self.nchannel = in_channels
self.use_cam = use_cam
if use_cam:
self.cam = CAM(channels_list=channels_list,
strides_list=strides_list,
in_shape=in_shape,
maxT=max_len + 1,
depth=depth,
num_channels=nchannel)
else:
self.cam = CAMSimp(maxT=max_len + 1, num_channels=nchannel)
self.pre_lstm = nn.LSTM(nchannel,
int(nchannel / 2),
bidirectional=True)
self.rnn = nn.GRUCell(nchannel * 2, nchannel)
self.generator = nn.Sequential(nn.Dropout(p=dropout),
nn.Linear(nchannel, out_channels - 2))
self.char_embeddings = nn.Embedding(out_channels,
embedding_dim=in_channels,
padding_idx=out_channels - 1)
def forward(self, inputs, data=None):
A = self.cam(inputs)
if isinstance(inputs, list):
feature = inputs[-1]
else:
feature = inputs
nB, nC, nH, nW = feature.shape
nT = A.shape[1]
# Normalize
A = A / A.view(nB, nT, -1).sum(2).view(nB, nT, 1, 1)
# weighted sum
C = feature.view(nB, 1, nC, nH, nW) * A.view(nB, nT, 1, nH, nW)
C = C.view(nB, nT, nC, -1).sum(3).transpose(1, 0) # T, B, C
C, _ = self.pre_lstm(C) # T, B, C
C = F.dropout(C, p=0.3, training=self.training)
if self.training:
text = data[0]
text_length = data[-1]
nsteps = int(text_length.max())
gru_res = torch.zeros_like(C)
hidden = torch.zeros(nB, self.nchannel).type_as(C.data)
prev_emb = self.char_embeddings(text[:, 0])
for i in range(0, nsteps + 1):
hidden = self.rnn(torch.cat((C[i, :, :], prev_emb), dim=1),
hidden)
gru_res[i, :, :] = hidden
prev_emb = self.char_embeddings(text[:, i + 1])
gru_res = self.generator(gru_res)
return gru_res[:nsteps + 1, :, :].transpose(1, 0)
else:
gru_res = torch.zeros_like(C)
hidden = torch.zeros(nB, self.nchannel).type_as(C.data)
prev_emb = self.char_embeddings(
torch.zeros(nB, dtype=torch.int64, device=feature.device) +
self.bos)
dec_seq = torch.full((nB, nT),
self.ignore_index,
dtype=torch.int64,
device=feature.get_device())
for i in range(0, nT):
hidden = self.rnn(torch.cat((C[i, :, :], prev_emb), dim=1),
hidden)
gru_res[i, :, :] = hidden
mid_res = self.generator(hidden).argmax(-1)
dec_seq[:, i] = mid_res.squeeze(0)
if (dec_seq == self.eos).any(dim=-1).all():
break
prev_emb = self.char_embeddings(mid_res)
gru_res = self.generator(gru_res)
return F.softmax(gru_res.transpose(1, 0), -1)
|