File size: 9,248 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""This code is refer from:
https://github.com/byeonghu-na/MATRN
"""

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from openrec.modeling.decoders.abinet_decoder import BCNLanguage, PositionAttention, _get_length
from openrec.modeling.decoders.nrtr_decoder import PositionalEncoding, TransformerBlock


class BaseSemanticVisual_backbone_feature(nn.Module):

    def __init__(self,
                 d_model=512,
                 nhead=8,
                 num_layers=4,
                 dim_feedforward=2048,
                 dropout=0.0,
                 alignment_mask_example_prob=0.9,
                 alignment_mask_candidate_prob=0.9,
                 alignment_num_vis_mask=10,
                 max_length=25,
                 num_classes=37):
        super().__init__()
        self.mask_example_prob = alignment_mask_example_prob
        self.mask_candidate_prob = alignment_mask_candidate_prob  #ifnone(config.model_alignment_mask_candidate_prob, 0.9)
        self.num_vis_mask = alignment_num_vis_mask
        self.nhead = nhead

        self.d_model = d_model
        self.max_length = max_length + 1  # additional stop token

        self.model1 = nn.ModuleList([
            TransformerBlock(
                d_model=d_model,
                nhead=nhead,
                dim_feedforward=dim_feedforward,
                attention_dropout_rate=dropout,
                residual_dropout_rate=dropout,
                with_self_attn=True,
                with_cross_attn=False,
            ) for i in range(num_layers)
        ])
        self.pos_encoder_tfm = PositionalEncoding(dim=d_model,
                                                  dropout=0,
                                                  max_len=1024)

        self.model2_vis = PositionAttention(
            max_length=self.max_length,  # additional stop token
            in_channels=d_model,
            num_channels=d_model // 8,
            mode='nearest',
        )
        self.cls_vis = nn.Linear(d_model, num_classes)
        self.cls_sem = nn.Linear(d_model, num_classes)
        self.w_att = nn.Linear(2 * d_model, d_model)

        v_token = torch.empty((1, d_model))
        self.v_token = nn.Parameter(v_token)
        torch.nn.init.uniform_(self.v_token, -0.001, 0.001)

        self.cls = nn.Linear(d_model, num_classes)

    def forward(self, l_feature, v_feature, lengths_l=None, v_attn=None):
        """
        Args:
            l_feature: (N, T, E) where T is length, N is batch size and d is dim of model
            v_feature: (N, E, H, W)
            lengths_l: (N,)
            v_attn: (N, T, H, W)
            l_logits: (N, T, C)
            texts: (N, T, C)
        """

        N, E, H, W = v_feature.size()
        v_feature = v_feature.flatten(2, 3).transpose(1, 2)  #(N, H*W, E)
        v_attn = v_attn.flatten(2, 3)  # (N, T, H*W)
        if self.training:
            for idx, length in enumerate(lengths_l):
                if np.random.random() <= self.mask_example_prob:
                    l_idx = np.random.randint(int(length))
                    v_random_idx = v_attn[idx, l_idx].argsort(
                        descending=True).cpu().numpy()[:self.num_vis_mask, ]
                    v_random_idx = v_random_idx[np.random.random(
                        v_random_idx.shape) <= self.mask_candidate_prob]
                    v_feature[idx, v_random_idx] = self.v_token

        zeros = v_feature.new_zeros((N, H * W, E))  # (N, H*W, E)
        base_pos = self.pos_encoder_tfm(zeros)  # (N, H*W, E)
        base_pos = torch.bmm(v_attn, base_pos)  # (N, T, E)

        l_feature = l_feature + base_pos

        sv_feature = torch.cat((v_feature, l_feature), dim=1)  # (H*W+T, N, E)
        for decoder_layer in self.model1:
            sv_feature = decoder_layer(sv_feature)  # (H*W+T, N, E)

        sv_to_v_feature = sv_feature[:, :H * W]  # (N, H*W, E)
        sv_to_s_feature = sv_feature[:, H * W:]  # (N, T, E)

        sv_to_v_feature = sv_to_v_feature.transpose(1, 2).reshape(N, E, H, W)
        sv_to_v_feature, _ = self.model2_vis(sv_to_v_feature)  # (N, T, E)
        sv_to_v_logits = self.cls_vis(sv_to_v_feature)  # (N, T, C)
        pt_v_lengths = _get_length(sv_to_v_logits)  # (N,)

        sv_to_s_logits = self.cls_sem(sv_to_s_feature)  # (N, T, C)
        pt_s_lengths = _get_length(sv_to_s_logits)  # (N,)

        f = torch.cat((sv_to_v_feature, sv_to_s_feature), dim=2)
        f_att = torch.sigmoid(self.w_att(f))
        output = f_att * sv_to_v_feature + (1 - f_att) * sv_to_s_feature

        logits = self.cls(output)  # (N, T, C)
        pt_lengths = _get_length(logits)

        return {
            'logits': logits,
            'pt_lengths': pt_lengths,
            'v_logits': sv_to_v_logits,
            'pt_v_lengths': pt_v_lengths,
            's_logits': sv_to_s_logits,
            'pt_s_lengths': pt_s_lengths,
            'name': 'alignment'
        }


class MATRNDecoder(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 nhead=8,
                 num_layers=3,
                 dim_feedforward=2048,
                 dropout=0.1,
                 max_length=25,
                 iter_size=3,
                 **kwargs):
        super().__init__()
        self.max_length = max_length + 1
        d_model = in_channels
        self.pos_encoder = PositionalEncoding(dropout=0.1, dim=d_model)
        self.encoder = nn.ModuleList([
            TransformerBlock(
                d_model=d_model,
                nhead=nhead,
                dim_feedforward=dim_feedforward,
                attention_dropout_rate=dropout,
                residual_dropout_rate=dropout,
                with_self_attn=True,
                with_cross_attn=False,
            ) for _ in range(num_layers)
        ])
        self.decoder = PositionAttention(
            max_length=self.max_length,  # additional stop token
            in_channels=d_model,
            num_channels=d_model // 8,
            mode='nearest',
        )
        self.out_channels = out_channels
        self.cls = nn.Linear(d_model, self.out_channels)
        self.iter_size = iter_size
        if iter_size > 0:
            self.language = BCNLanguage(
                d_model=d_model,
                nhead=nhead,
                num_layers=4,
                dim_feedforward=dim_feedforward,
                dropout=dropout,
                max_length=max_length,
                num_classes=self.out_channels,
            )
            # alignment
            self.semantic_visual = BaseSemanticVisual_backbone_feature(
                d_model=d_model,
                nhead=nhead,
                num_layers=2,
                dim_feedforward=dim_feedforward,
                max_length=max_length,
                num_classes=self.out_channels)

    def forward(self, x, data=None):
        # bs, c, h, w
        x = x.permute([0, 2, 3, 1])  # bs, h, w, c
        _, H, W, C = x.shape
        # assert H % 8 == 0 and W % 16 == 0, 'The height and width should be multiples of 8 and 16.'
        feature = x.flatten(1, 2)  # bs, h*w, c
        feature = self.pos_encoder(feature)  # bs, h*w, c
        for encoder_layer in self.encoder:
            feature = encoder_layer(feature)
        # bs, h*w, c
        feature = feature.reshape([-1, H, W, C]).permute(0, 3, 1,
                                                         2)  # bs, c, h, w
        v_feature, v_attn_input = self.decoder(feature)  # (bs[N], T, E)
        vis_logits = self.cls(v_feature)  # (bs[N], T, E)
        align_lengths = _get_length(vis_logits)
        align_logits = vis_logits
        all_l_res, all_a_res = [], []
        for _ in range(self.iter_size):
            tokens = F.softmax(align_logits, dim=-1)
            lengths = torch.clamp(
                align_lengths, 2,
                self.max_length)  # TODO: move to language model
            l_feature, l_logits = self.language(tokens, lengths)
            all_l_res.append(l_logits)
            # alignment
            lengths_l = _get_length(l_logits)
            lengths_l.clamp_(2, self.max_length)

            a_res = self.semantic_visual(l_feature,
                                         feature,
                                         lengths_l=lengths_l,
                                         v_attn=v_attn_input)

            a_v_res = a_res['v_logits']
            # {'logits': a_res['v_logits'], 'pt_lengths': a_res['pt_v_lengths'], 'loss_weight': a_res['loss_weight'],
            #               'name': 'alignment'}
            all_a_res.append(a_v_res)
            a_s_res = a_res['s_logits']
            # {'logits': a_res['s_logits'], 'pt_lengths': a_res['pt_s_lengths'], 'loss_weight': a_res['loss_weight'],
            #               'name': 'alignment'}
            align_logits = a_res['logits']
            all_a_res.append(a_s_res)
            all_a_res.append(align_logits)
            align_lengths = a_res['pt_lengths']
        if self.training:
            return {
                'align': all_a_res,
                'lang': all_l_res,
                'vision': vis_logits
            }
        else:
            return F.softmax(align_logits, -1)