Spaces:
Running
Running
File size: 16,390 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from openrec.modeling.common import Mlp
class NRTRDecoder(nn.Module):
"""A transformer model. User is able to modify the attributes as needed.
The architechture is based on the paper "Attention Is All You Need". Ashish
Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing Systems, pages
6000-6010.
Args:
d_model: the number of expected features in the encoder/decoder inputs (default=512).
nhead: the number of heads in the multiheadattention models (default=8).
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
custom_encoder: custom encoder (default=None).
custom_decoder: custom decoder (default=None).
"""
def __init__(
self,
in_channels,
out_channels,
nhead=None,
num_encoder_layers=6,
beam_size=0,
num_decoder_layers=6,
max_len=25,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1,
scale_embedding=True,
):
super(NRTRDecoder, self).__init__()
self.out_channels = out_channels
self.ignore_index = out_channels - 1
self.bos = out_channels - 2
self.eos = 0
self.max_len = max_len
d_model = in_channels
dim_feedforward = d_model * 4
nhead = nhead if nhead is not None else d_model // 32
self.embedding = Embeddings(
d_model=d_model,
vocab=self.out_channels,
padding_idx=0,
scale_embedding=scale_embedding,
)
self.positional_encoding = PositionalEncoding(
dropout=residual_dropout_rate, dim=d_model)
if num_encoder_layers > 0:
self.encoder = nn.ModuleList([
TransformerBlock(
d_model,
nhead,
dim_feedforward,
attention_dropout_rate,
residual_dropout_rate,
with_self_attn=True,
with_cross_attn=False,
) for i in range(num_encoder_layers)
])
else:
self.encoder = None
self.decoder = nn.ModuleList([
TransformerBlock(
d_model,
nhead,
dim_feedforward,
attention_dropout_rate,
residual_dropout_rate,
with_self_attn=True,
with_cross_attn=True,
) for i in range(num_decoder_layers)
])
self.beam_size = beam_size
self.d_model = d_model
self.nhead = nhead
self.tgt_word_prj = nn.Linear(d_model,
self.out_channels - 2,
bias=False)
w0 = np.random.normal(0.0, d_model**-0.5,
(d_model, self.out_channels - 2)).astype(
np.float32)
self.tgt_word_prj.weight.data = torch.from_numpy(w0.transpose())
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
def forward_train(self, src, tgt):
tgt = tgt[:, :-1]
tgt = self.embedding(tgt)
tgt = self.positional_encoding(tgt)
tgt_mask = self.generate_square_subsequent_mask(
tgt.shape[1], device=src.get_device())
if self.encoder is not None:
src = self.positional_encoding(src)
for encoder_layer in self.encoder:
src = encoder_layer(src)
memory = src # B N C
else:
memory = src # B N C
for decoder_layer in self.decoder:
tgt = decoder_layer(tgt, memory, self_mask=tgt_mask)
output = tgt
logit = self.tgt_word_prj(output)
return logit
def forward(self, src, data=None):
"""Take in and process masked source/target sequences.
Args:
src: the sequence to the encoder (required).
tgt: the sequence to the decoder (required).
Shape:
- src: :math:`(B, sN, C)`.
- tgt: :math:`(B, tN, C)`.
Examples:
>>> output = transformer_model(src, tgt)
"""
if self.training:
max_len = data[1].max()
tgt = data[0][:, :2 + max_len]
res = self.forward_train(src, tgt)
else:
res = self.forward_test(src)
return res
def forward_test(self, src):
bs = src.shape[0]
if self.encoder is not None:
src = self.positional_encoding(src)
for encoder_layer in self.encoder:
src = encoder_layer(src)
memory = src # B N C
else:
memory = src
dec_seq = torch.full((bs, self.max_len + 1),
self.ignore_index,
dtype=torch.int64,
device=src.get_device())
dec_seq[:, 0] = self.bos
logits = []
self.attn_maps = []
for len_dec_seq in range(0, self.max_len):
dec_seq_embed = self.embedding(
dec_seq[:, :len_dec_seq + 1]) # N dim 26+10 # </s> 012 a
dec_seq_embed = self.positional_encoding(dec_seq_embed)
tgt_mask = self.generate_square_subsequent_mask(
dec_seq_embed.shape[1], src.get_device())
tgt = dec_seq_embed # bs, 3, dim #bos, a, b, c, ... eos
for decoder_layer in self.decoder:
tgt = decoder_layer(tgt, memory, self_mask=tgt_mask)
self.attn_maps.append(
self.decoder[-1].cross_attn.attn_map[0][:, -1:, :])
dec_output = tgt
dec_output = dec_output[:, -1:, :]
word_prob = F.softmax(self.tgt_word_prj(dec_output), dim=-1)
logits.append(word_prob)
if len_dec_seq < self.max_len:
# greedy decode. add the next token index to the target input
dec_seq[:, len_dec_seq + 1] = word_prob.squeeze().argmax(-1)
# Efficient batch decoding: If all output words have at least one EOS token, end decoding.
if (dec_seq == self.eos).any(dim=-1).all():
break
logits = torch.cat(logits, dim=1)
return logits
def generate_square_subsequent_mask(self, sz, device):
"""Generate a square mask for the sequence.
The masked positions are filled with float('-inf'). Unmasked positions
are filled with float(0.0).
"""
mask = torch.zeros([sz, sz], dtype=torch.float32)
mask_inf = torch.triu(
torch.full((sz, sz), dtype=torch.float32, fill_value=-torch.inf),
diagonal=1,
)
mask = mask + mask_inf
return mask.unsqueeze(0).unsqueeze(0).to(device)
class MultiheadAttention(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0.0, self_attn=False):
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
assert (self.head_dim * num_heads == self.embed_dim
), 'embed_dim must be divisible by num_heads'
self.scale = self.head_dim**-0.5
self.self_attn = self_attn
if self_attn:
self.qkv = nn.Linear(embed_dim, embed_dim * 3)
else:
self.q = nn.Linear(embed_dim, embed_dim)
self.kv = nn.Linear(embed_dim, embed_dim * 2)
self.attn_drop = nn.Dropout(dropout)
self.out_proj = nn.Linear(embed_dim, embed_dim)
def forward(self, query, key=None, attn_mask=None):
B, qN = query.shape[:2]
if self.self_attn:
qkv = self.qkv(query)
qkv = qkv.reshape(B, qN, 3, self.num_heads,
self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
else:
kN = key.shape[1]
q = self.q(query)
q = q.reshape(B, qN, self.num_heads, self.head_dim).transpose(1, 2)
kv = self.kv(key)
kv = kv.reshape(B, kN, 2, self.num_heads,
self.head_dim).permute(2, 0, 3, 1, 4)
k, v = kv.unbind(0)
attn = (q.matmul(k.transpose(2, 3))) * self.scale
if attn_mask is not None:
attn += attn_mask
attn = F.softmax(attn, dim=-1)
if not self.training:
self.attn_map = attn
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose(1, 2)
x = x.reshape(B, qN, self.embed_dim)
x = self.out_proj(x)
return x
class TransformerBlock(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1,
with_self_attn=True,
with_cross_attn=False,
epsilon=1e-5,
):
super(TransformerBlock, self).__init__()
self.with_self_attn = with_self_attn
if with_self_attn:
self.self_attn = MultiheadAttention(d_model,
nhead,
dropout=attention_dropout_rate,
self_attn=with_self_attn)
self.norm1 = nn.LayerNorm(d_model, eps=epsilon)
self.dropout1 = nn.Dropout(residual_dropout_rate)
self.with_cross_attn = with_cross_attn
if with_cross_attn:
self.cross_attn = MultiheadAttention(
d_model, nhead, dropout=attention_dropout_rate
) # for self_attn of encoder or cross_attn of decoder
self.norm2 = nn.LayerNorm(d_model, eps=epsilon)
self.dropout2 = nn.Dropout(residual_dropout_rate)
self.mlp = Mlp(
in_features=d_model,
hidden_features=dim_feedforward,
act_layer=nn.ReLU,
drop=residual_dropout_rate,
)
self.norm3 = nn.LayerNorm(d_model, eps=epsilon)
self.dropout3 = nn.Dropout(residual_dropout_rate)
def forward(self, tgt, memory=None, self_mask=None, cross_mask=None):
if self.with_self_attn:
tgt1 = self.self_attn(tgt, attn_mask=self_mask)
tgt = self.norm1(tgt + self.dropout1(tgt1))
if self.with_cross_attn:
tgt2 = self.cross_attn(tgt, key=memory, attn_mask=cross_mask)
tgt = self.norm2(tgt + self.dropout2(tgt2))
tgt = self.norm3(tgt + self.dropout3(self.mlp(tgt)))
return tgt
class PositionalEncoding(nn.Module):
"""Inject some information about the relative or absolute position of the
tokens in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, dropout, dim, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros([max_len, dim])
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = torch.unsqueeze(pe, 0)
# pe = torch.permute(pe, [1, 0, 2])
self.register_buffer('pe', pe)
def forward(self, x):
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
# x = x.permute([1, 0, 2])
# x = x + self.pe[:x.shape[0], :]
x = x + self.pe[:, :x.shape[1], :]
return self.dropout(x) # .permute([1, 0, 2])
class PositionalEncoding_2d(nn.Module):
"""Inject some information about the relative or absolute position of the
tokens in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, dropout, dim, max_len=5000):
super(PositionalEncoding_2d, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros([max_len, dim])
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = torch.permute(torch.unsqueeze(pe, 0), [1, 0, 2])
self.register_buffer('pe', pe)
self.avg_pool_1 = nn.AdaptiveAvgPool2d((1, 1))
self.linear1 = nn.Linear(dim, dim)
self.linear1.weight.data.fill_(1.0)
self.avg_pool_2 = nn.AdaptiveAvgPool2d((1, 1))
self.linear2 = nn.Linear(dim, dim)
self.linear2.weight.data.fill_(1.0)
def forward(self, x):
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
w_pe = self.pe[:x.shape[-1], :]
w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
w_pe = w_pe * w1
w_pe = torch.permute(w_pe, [1, 2, 0])
w_pe = torch.unsqueeze(w_pe, 2)
h_pe = self.pe[:x.shape[-2], :]
w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
h_pe = h_pe * w2
h_pe = torch.permute(h_pe, [1, 2, 0])
h_pe = torch.unsqueeze(h_pe, 3)
x = x + w_pe + h_pe
x = torch.permute(
torch.reshape(x,
[x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]),
[2, 0, 1],
)
return self.dropout(x)
class Embeddings(nn.Module):
def __init__(self, d_model, vocab, padding_idx=None, scale_embedding=True):
super(Embeddings, self).__init__()
self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)
self.embedding.weight.data.normal_(mean=0.0, std=d_model**-0.5)
self.d_model = d_model
self.scale_embedding = scale_embedding
def forward(self, x):
if self.scale_embedding:
x = self.embedding(x)
return x * math.sqrt(self.d_model)
return self.embedding(x)
|