File size: 16,390 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import math

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn

from openrec.modeling.common import Mlp


class NRTRDecoder(nn.Module):
    """A transformer model. User is able to modify the attributes as needed.
    The architechture is based on the paper "Attention Is All You Need". Ashish
    Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
    Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
    need. In Advances in Neural Information Processing Systems, pages
    6000-6010.

    Args:
        d_model: the number of expected features in the encoder/decoder inputs (default=512).
        nhead: the number of heads in the multiheadattention models (default=8).
        num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
        num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        custom_encoder: custom encoder (default=None).
        custom_decoder: custom decoder (default=None).
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        nhead=None,
        num_encoder_layers=6,
        beam_size=0,
        num_decoder_layers=6,
        max_len=25,
        attention_dropout_rate=0.0,
        residual_dropout_rate=0.1,
        scale_embedding=True,
    ):
        super(NRTRDecoder, self).__init__()
        self.out_channels = out_channels
        self.ignore_index = out_channels - 1
        self.bos = out_channels - 2
        self.eos = 0
        self.max_len = max_len
        d_model = in_channels
        dim_feedforward = d_model * 4
        nhead = nhead if nhead is not None else d_model // 32
        self.embedding = Embeddings(
            d_model=d_model,
            vocab=self.out_channels,
            padding_idx=0,
            scale_embedding=scale_embedding,
        )
        self.positional_encoding = PositionalEncoding(
            dropout=residual_dropout_rate, dim=d_model)

        if num_encoder_layers > 0:
            self.encoder = nn.ModuleList([
                TransformerBlock(
                    d_model,
                    nhead,
                    dim_feedforward,
                    attention_dropout_rate,
                    residual_dropout_rate,
                    with_self_attn=True,
                    with_cross_attn=False,
                ) for i in range(num_encoder_layers)
            ])
        else:
            self.encoder = None

        self.decoder = nn.ModuleList([
            TransformerBlock(
                d_model,
                nhead,
                dim_feedforward,
                attention_dropout_rate,
                residual_dropout_rate,
                with_self_attn=True,
                with_cross_attn=True,
            ) for i in range(num_decoder_layers)
        ])

        self.beam_size = beam_size
        self.d_model = d_model
        self.nhead = nhead
        self.tgt_word_prj = nn.Linear(d_model,
                                      self.out_channels - 2,
                                      bias=False)
        w0 = np.random.normal(0.0, d_model**-0.5,
                              (d_model, self.out_channels - 2)).astype(
                                  np.float32)
        self.tgt_word_prj.weight.data = torch.from_numpy(w0.transpose())
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_normal_(m.weight)
            if m.bias is not None:
                nn.init.zeros_(m.bias)

    def forward_train(self, src, tgt):
        tgt = tgt[:, :-1]

        tgt = self.embedding(tgt)
        tgt = self.positional_encoding(tgt)
        tgt_mask = self.generate_square_subsequent_mask(
            tgt.shape[1], device=src.get_device())

        if self.encoder is not None:
            src = self.positional_encoding(src)
            for encoder_layer in self.encoder:
                src = encoder_layer(src)
            memory = src  # B N C
        else:
            memory = src  # B N C
        for decoder_layer in self.decoder:
            tgt = decoder_layer(tgt, memory, self_mask=tgt_mask)
        output = tgt
        logit = self.tgt_word_prj(output)
        return logit

    def forward(self, src, data=None):
        """Take in and process masked source/target sequences.
        Args:
            src: the sequence to the encoder (required).
            tgt: the sequence to the decoder (required).
        Shape:
            - src: :math:`(B, sN, C)`.
            - tgt: :math:`(B, tN, C)`.
        Examples:
            >>> output = transformer_model(src, tgt)
        """

        if self.training:
            max_len = data[1].max()
            tgt = data[0][:, :2 + max_len]
            res = self.forward_train(src, tgt)
        else:
            res = self.forward_test(src)
        return res

    def forward_test(self, src):
        bs = src.shape[0]
        if self.encoder is not None:
            src = self.positional_encoding(src)
            for encoder_layer in self.encoder:
                src = encoder_layer(src)
            memory = src  # B N C
        else:
            memory = src
        dec_seq = torch.full((bs, self.max_len + 1),
                             self.ignore_index,
                             dtype=torch.int64,
                             device=src.get_device())
        dec_seq[:, 0] = self.bos
        logits = []
        self.attn_maps = []
        for len_dec_seq in range(0, self.max_len):
            dec_seq_embed = self.embedding(
                dec_seq[:, :len_dec_seq + 1])  # N dim 26+10 # </s>  012 a
            dec_seq_embed = self.positional_encoding(dec_seq_embed)
            tgt_mask = self.generate_square_subsequent_mask(
                dec_seq_embed.shape[1], src.get_device())
            tgt = dec_seq_embed  # bs, 3, dim #bos, a, b, c, ... eos
            for decoder_layer in self.decoder:
                tgt = decoder_layer(tgt, memory, self_mask=tgt_mask)
            self.attn_maps.append(
                self.decoder[-1].cross_attn.attn_map[0][:, -1:, :])
            dec_output = tgt
            dec_output = dec_output[:, -1:, :]

            word_prob = F.softmax(self.tgt_word_prj(dec_output), dim=-1)
            logits.append(word_prob)
            if len_dec_seq < self.max_len:
                # greedy decode. add the next token index to the target input
                dec_seq[:, len_dec_seq + 1] = word_prob.squeeze().argmax(-1)
                # Efficient batch decoding: If all output words have at least one EOS token, end decoding.
                if (dec_seq == self.eos).any(dim=-1).all():
                    break
        logits = torch.cat(logits, dim=1)
        return logits

    def generate_square_subsequent_mask(self, sz, device):
        """Generate a square mask for the sequence.

        The masked positions are filled with float('-inf'). Unmasked positions
        are filled with float(0.0).
        """
        mask = torch.zeros([sz, sz], dtype=torch.float32)
        mask_inf = torch.triu(
            torch.full((sz, sz), dtype=torch.float32, fill_value=-torch.inf),
            diagonal=1,
        )
        mask = mask + mask_inf
        return mask.unsqueeze(0).unsqueeze(0).to(device)


class MultiheadAttention(nn.Module):

    def __init__(self, embed_dim, num_heads, dropout=0.0, self_attn=False):
        super(MultiheadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        assert (self.head_dim * num_heads == self.embed_dim
                ), 'embed_dim must be divisible by num_heads'
        self.scale = self.head_dim**-0.5
        self.self_attn = self_attn
        if self_attn:
            self.qkv = nn.Linear(embed_dim, embed_dim * 3)
        else:
            self.q = nn.Linear(embed_dim, embed_dim)
            self.kv = nn.Linear(embed_dim, embed_dim * 2)
        self.attn_drop = nn.Dropout(dropout)
        self.out_proj = nn.Linear(embed_dim, embed_dim)

    def forward(self, query, key=None, attn_mask=None):
        B, qN = query.shape[:2]

        if self.self_attn:
            qkv = self.qkv(query)
            qkv = qkv.reshape(B, qN, 3, self.num_heads,
                              self.head_dim).permute(2, 0, 3, 1, 4)
            q, k, v = qkv.unbind(0)
        else:
            kN = key.shape[1]
            q = self.q(query)
            q = q.reshape(B, qN, self.num_heads, self.head_dim).transpose(1, 2)
            kv = self.kv(key)
            kv = kv.reshape(B, kN, 2, self.num_heads,
                            self.head_dim).permute(2, 0, 3, 1, 4)
            k, v = kv.unbind(0)

        attn = (q.matmul(k.transpose(2, 3))) * self.scale
        if attn_mask is not None:
            attn += attn_mask

        attn = F.softmax(attn, dim=-1)
        if not self.training:
            self.attn_map = attn
        attn = self.attn_drop(attn)

        x = (attn.matmul(v)).transpose(1, 2)
        x = x.reshape(B, qN, self.embed_dim)
        x = self.out_proj(x)

        return x


class TransformerBlock(nn.Module):

    def __init__(
        self,
        d_model,
        nhead,
        dim_feedforward=2048,
        attention_dropout_rate=0.0,
        residual_dropout_rate=0.1,
        with_self_attn=True,
        with_cross_attn=False,
        epsilon=1e-5,
    ):
        super(TransformerBlock, self).__init__()
        self.with_self_attn = with_self_attn
        if with_self_attn:
            self.self_attn = MultiheadAttention(d_model,
                                                nhead,
                                                dropout=attention_dropout_rate,
                                                self_attn=with_self_attn)
            self.norm1 = nn.LayerNorm(d_model, eps=epsilon)
            self.dropout1 = nn.Dropout(residual_dropout_rate)
        self.with_cross_attn = with_cross_attn
        if with_cross_attn:
            self.cross_attn = MultiheadAttention(
                d_model, nhead, dropout=attention_dropout_rate
            )  # for self_attn of encoder or cross_attn of decoder
            self.norm2 = nn.LayerNorm(d_model, eps=epsilon)
            self.dropout2 = nn.Dropout(residual_dropout_rate)

        self.mlp = Mlp(
            in_features=d_model,
            hidden_features=dim_feedforward,
            act_layer=nn.ReLU,
            drop=residual_dropout_rate,
        )

        self.norm3 = nn.LayerNorm(d_model, eps=epsilon)

        self.dropout3 = nn.Dropout(residual_dropout_rate)

    def forward(self, tgt, memory=None, self_mask=None, cross_mask=None):
        if self.with_self_attn:
            tgt1 = self.self_attn(tgt, attn_mask=self_mask)
            tgt = self.norm1(tgt + self.dropout1(tgt1))

        if self.with_cross_attn:
            tgt2 = self.cross_attn(tgt, key=memory, attn_mask=cross_mask)
            tgt = self.norm2(tgt + self.dropout2(tgt2))
        tgt = self.norm3(tgt + self.dropout3(self.mlp(tgt)))
        return tgt


class PositionalEncoding(nn.Module):
    """Inject some information about the relative or absolute position of the
    tokens in the sequence. The positional encodings have the same dimension as
    the embeddings, so that the two can be summed. Here, we use sine and cosine
    functions of different frequencies.

    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, dropout, dim, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros([max_len, dim])
        position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = torch.unsqueeze(pe, 0)
        # pe = torch.permute(pe, [1, 0, 2])
        self.register_buffer('pe', pe)

    def forward(self, x):
        """Inputs of forward function
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        # x = x.permute([1, 0, 2])
        # x = x + self.pe[:x.shape[0], :]
        x = x + self.pe[:, :x.shape[1], :]
        return self.dropout(x)  # .permute([1, 0, 2])


class PositionalEncoding_2d(nn.Module):
    """Inject some information about the relative or absolute position of the
    tokens in the sequence. The positional encodings have the same dimension as
    the embeddings, so that the two can be summed. Here, we use sine and cosine
    functions of different frequencies.

    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, dropout, dim, max_len=5000):
        super(PositionalEncoding_2d, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros([max_len, dim])
        position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = torch.permute(torch.unsqueeze(pe, 0), [1, 0, 2])
        self.register_buffer('pe', pe)

        self.avg_pool_1 = nn.AdaptiveAvgPool2d((1, 1))
        self.linear1 = nn.Linear(dim, dim)
        self.linear1.weight.data.fill_(1.0)
        self.avg_pool_2 = nn.AdaptiveAvgPool2d((1, 1))
        self.linear2 = nn.Linear(dim, dim)
        self.linear2.weight.data.fill_(1.0)

    def forward(self, x):
        """Inputs of forward function
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        w_pe = self.pe[:x.shape[-1], :]
        w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
        w_pe = w_pe * w1
        w_pe = torch.permute(w_pe, [1, 2, 0])
        w_pe = torch.unsqueeze(w_pe, 2)

        h_pe = self.pe[:x.shape[-2], :]
        w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
        h_pe = h_pe * w2
        h_pe = torch.permute(h_pe, [1, 2, 0])
        h_pe = torch.unsqueeze(h_pe, 3)

        x = x + w_pe + h_pe
        x = torch.permute(
            torch.reshape(x,
                          [x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]),
            [2, 0, 1],
        )

        return self.dropout(x)


class Embeddings(nn.Module):

    def __init__(self, d_model, vocab, padding_idx=None, scale_embedding=True):
        super(Embeddings, self).__init__()
        self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)
        self.embedding.weight.data.normal_(mean=0.0, std=d_model**-0.5)
        self.d_model = d_model
        self.scale_embedding = scale_embedding

    def forward(self, x):
        if self.scale_embedding:
            x = self.embedding(x)
            return x * math.sqrt(self.d_model)
        return self.embedding(x)