Spaces:
Running
Running
File size: 26,912 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class RobustScannerDecoder(nn.Module):
def __init__(
self,
out_channels, # 90 + unknown + start + padding
in_channels,
enc_outchannles=128,
hybrid_dec_rnn_layers=2,
hybrid_dec_dropout=0,
position_dec_rnn_layers=2,
max_len=25,
mask=True,
encode_value=False,
**kwargs):
super(RobustScannerDecoder, self).__init__()
start_idx = out_channels - 2
padding_idx = out_channels - 1
end_idx = 0
# encoder module
self.encoder = ChannelReductionEncoder(in_channels=in_channels,
out_channels=enc_outchannles)
self.max_text_length = max_len + 1
self.mask = mask
# decoder module
self.decoder = Decoder(
num_classes=out_channels,
dim_input=in_channels,
dim_model=enc_outchannles,
hybrid_decoder_rnn_layers=hybrid_dec_rnn_layers,
hybrid_decoder_dropout=hybrid_dec_dropout,
position_decoder_rnn_layers=position_dec_rnn_layers,
max_len=max_len + 1,
start_idx=start_idx,
mask=mask,
padding_idx=padding_idx,
end_idx=end_idx,
encode_value=encode_value)
def forward(self, inputs, data=None):
'''
data: [label, valid_ratio, 'length']
'''
out_enc = self.encoder(inputs)
bs = out_enc.shape[0]
valid_ratios = None
word_positions = torch.arange(0,
self.max_text_length,
device=inputs.device).unsqueeze(0).tile(
[bs, 1])
if self.mask:
valid_ratios = data[-1]
if self.training:
max_len = data[1].max()
label = data[0][:, :1 + max_len] # label
final_out = self.decoder(inputs, out_enc, label, valid_ratios,
word_positions[:, :1 + max_len])
if not self.training:
final_out = self.decoder(inputs,
out_enc,
label=None,
valid_ratios=valid_ratios,
word_positions=word_positions,
train_mode=False)
return final_out
class BaseDecoder(nn.Module):
def __init__(self, **kwargs):
super().__init__()
def forward_train(self, feat, out_enc, targets, img_metas):
raise NotImplementedError
def forward_test(self, feat, out_enc, img_metas):
raise NotImplementedError
def forward(self,
feat,
out_enc,
label=None,
valid_ratios=None,
word_positions=None,
train_mode=True):
self.train_mode = train_mode
if train_mode:
return self.forward_train(feat, out_enc, label, valid_ratios,
word_positions)
return self.forward_test(feat, out_enc, valid_ratios, word_positions)
class ChannelReductionEncoder(nn.Module):
"""Change the channel number with a one by one convoluational layer.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
"""
def __init__(self, in_channels, out_channels, **kwargs):
super(ChannelReductionEncoder, self).__init__()
weight = torch.nn.Parameter(
torch.nn.init.xavier_normal_(torch.empty(out_channels, in_channels,
1, 1),
gain=1.0))
self.layer = nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
use_xavier_normal = 1
if use_xavier_normal:
self.layer.weight = weight
def forward(self, feat):
"""
Args:
feat (Tensor): Image features with the shape of
:math:`(N, C_{in}, H, W)`.
Returns:
Tensor: A tensor of shape :math:`(N, C_{out}, H, W)`.
"""
return self.layer(feat)
def masked_fill(x, mask, value):
y = torch.full(x.shape, value, x.dtype)
return torch.where(mask, y, x)
class DotProductAttentionLayer(nn.Module):
def __init__(self, dim_model=None):
super().__init__()
self.scale = dim_model**-0.5 if dim_model is not None else 1.
def forward(self, query, key, value, mask=None):
query = query.permute(0, 2, 1)
logits = query @ key * self.scale
if mask is not None:
n, seq_len = mask.size()
mask = mask.view(n, 1, seq_len)
logits = logits.masked_fill(mask, float('-inf'))
weights = F.softmax(logits, dim=2)
value = value.transpose(1, 2)
glimpse = weights @ value
glimpse = glimpse.permute(0, 2, 1).contiguous()
return glimpse
class SequenceAttentionDecoder(BaseDecoder):
"""Sequence attention decoder for RobustScanner.
RobustScanner: `RobustScanner: Dynamically Enhancing Positional Clues for
Robust Text Recognition <https://arxiv.org/abs/2007.07542>`_
Args:
num_classes (int): Number of output classes :math:`C`.
rnn_layers (int): Number of RNN layers.
dim_input (int): Dimension :math:`D_i` of input vector ``feat``.
dim_model (int): Dimension :math:`D_m` of the model. Should also be the
same as encoder output vector ``out_enc``.
max_seq_len (int): Maximum output sequence length :math:`T`.
start_idx (int): The index of `<SOS>`.
mask (bool): Whether to mask input features according to
``img_meta['valid_ratio']``.
padding_idx (int): The index of `<PAD>`.
dropout (float): Dropout rate.
return_feature (bool): Return feature or logits as the result.
encode_value (bool): Whether to use the output of encoder ``out_enc``
as `value` of attention layer. If False, the original feature
``feat`` will be used.
Warning:
This decoder will not predict the final class which is assumed to be
`<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>`
is also ignored by loss as specified in
:obj:`mmocr.models.textrecog.recognizer.EncodeDecodeRecognizer`.
"""
def __init__(self,
num_classes=None,
rnn_layers=2,
dim_input=512,
dim_model=128,
max_seq_len=40,
start_idx=0,
mask=True,
padding_idx=None,
dropout=0,
return_feature=False,
encode_value=False):
super().__init__()
self.num_classes = num_classes
self.dim_input = dim_input
self.dim_model = dim_model
self.return_feature = return_feature
self.encode_value = encode_value
self.max_seq_len = max_seq_len
self.start_idx = start_idx
self.mask = mask
self.embedding = nn.Embedding(self.num_classes,
self.dim_model,
padding_idx=padding_idx)
self.sequence_layer = nn.LSTM(input_size=dim_model,
hidden_size=dim_model,
num_layers=rnn_layers,
batch_first=True,
dropout=dropout)
self.attention_layer = DotProductAttentionLayer()
self.prediction = None
if not self.return_feature:
pred_num_classes = num_classes - 1
self.prediction = nn.Linear(
dim_model if encode_value else dim_input, pred_num_classes)
def forward_train(self, feat, out_enc, targets, valid_ratios):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
targets (Tensor): a tensor of shape :math:`(N, T)`. Each element is the index of a
character.
valid_ratios (Tensor): valid length ratio of img.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)` if
``return_feature=False``. Otherwise it would be the hidden feature
before the prediction projection layer, whose shape is
:math:`(N, T, D_m)`.
"""
tgt_embedding = self.embedding(targets)
n, c_enc, h, w = out_enc.shape
assert c_enc == self.dim_model
_, c_feat, _, _ = feat.shape
assert c_feat == self.dim_input
_, len_q, c_q = tgt_embedding.shape
assert c_q == self.dim_model
assert len_q <= self.max_seq_len
query, _ = self.sequence_layer(tgt_embedding)
query = query.permute(0, 2, 1).contiguous()
key = out_enc.view(n, c_enc, h * w)
if self.encode_value:
value = key
else:
value = feat.view(n, c_feat, h * w)
mask = None
if valid_ratios is not None:
mask = query.new_zeros((n, h, w))
for i, valid_ratio in enumerate(valid_ratios):
valid_width = min(w, math.ceil(w * valid_ratio))
mask[i, :, valid_width:] = 1
mask = mask.bool()
mask = mask.view(n, h * w)
attn_out = self.attention_layer(query, key, value, mask)
attn_out = attn_out.permute(0, 2, 1).contiguous()
if self.return_feature:
return attn_out
out = self.prediction(attn_out)
return out
def forward_test(self, feat, out_enc, valid_ratios):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
valid_ratios (Tensor): valid length ratio of img.
Returns:
Tensor: The output logit sequence tensor of shape
:math:`(N, T, C-1)`.
"""
batch_size = feat.shape[0]
decode_sequence = (torch.ones((batch_size, self.max_seq_len),
dtype=torch.int64,
device=feat.device) * self.start_idx)
outputs = []
for i in range(self.max_seq_len):
step_out = self.forward_test_step(feat, out_enc, decode_sequence,
i, valid_ratios)
outputs.append(step_out)
max_idx = torch.argmax(step_out, dim=1, keepdim=False)
if i < self.max_seq_len - 1:
decode_sequence[:, i + 1] = max_idx
outputs = torch.stack(outputs, 1)
return outputs
def forward_test_step(self, feat, out_enc, decode_sequence, current_step,
valid_ratios):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
decode_sequence (Tensor): Shape :math:`(N, T)`. The tensor that
stores history decoding result.
current_step (int): Current decoding step.
valid_ratios (Tensor): valid length ratio of img
Returns:
Tensor: Shape :math:`(N, C-1)`. The logit tensor of predicted
tokens at current time step.
"""
embed = self.embedding(decode_sequence)
n, c_enc, h, w = out_enc.shape
assert c_enc == self.dim_model
_, c_feat, _, _ = feat.shape
assert c_feat == self.dim_input
_, _, c_q = embed.shape
assert c_q == self.dim_model
query, _ = self.sequence_layer(embed)
query = query.transpose(1, 2)
key = torch.reshape(out_enc, (n, c_enc, h * w))
if self.encode_value:
value = key
else:
value = torch.reshape(feat, (n, c_feat, h * w))
mask = None
if valid_ratios is not None:
mask = query.new_zeros((n, h, w))
for i, valid_ratio in enumerate(valid_ratios):
valid_width = min(w, math.ceil(w * valid_ratio))
mask[i, :, valid_width:] = 1
mask = mask.bool()
mask = mask.view(n, h * w)
# [n, c, l]
attn_out = self.attention_layer(query, key, value, mask)
out = attn_out[:, :, current_step]
if self.return_feature:
return out
out = self.prediction(out)
out = F.softmax(out, dim=-1)
return out
class PositionAwareLayer(nn.Module):
def __init__(self, dim_model, rnn_layers=2):
super().__init__()
self.dim_model = dim_model
self.rnn = nn.LSTM(input_size=dim_model,
hidden_size=dim_model,
num_layers=rnn_layers,
batch_first=True)
self.mixer = nn.Sequential(
nn.Conv2d(dim_model, dim_model, kernel_size=3, stride=1,
padding=1), nn.ReLU(True),
nn.Conv2d(dim_model, dim_model, kernel_size=3, stride=1,
padding=1))
def forward(self, img_feature):
n, c, h, w = img_feature.shape
rnn_input = img_feature.permute(0, 2, 3, 1).contiguous()
rnn_input = rnn_input.view(n * h, w, c)
rnn_output, _ = self.rnn(rnn_input)
rnn_output = rnn_output.view(n, h, w, c)
rnn_output = rnn_output.permute(0, 3, 1, 2).contiguous()
out = self.mixer(rnn_output)
return out
class PositionAttentionDecoder(BaseDecoder):
"""Position attention decoder for RobustScanner.
RobustScanner: `RobustScanner: Dynamically Enhancing Positional Clues for
Robust Text Recognition <https://arxiv.org/abs/2007.07542>`_
Args:
num_classes (int): Number of output classes :math:`C`.
rnn_layers (int): Number of RNN layers.
dim_input (int): Dimension :math:`D_i` of input vector ``feat``.
dim_model (int): Dimension :math:`D_m` of the model. Should also be the
same as encoder output vector ``out_enc``.
max_seq_len (int): Maximum output sequence length :math:`T`.
mask (bool): Whether to mask input features according to
``img_meta['valid_ratio']``.
return_feature (bool): Return feature or logits as the result.
encode_value (bool): Whether to use the output of encoder ``out_enc``
as `value` of attention layer. If False, the original feature
``feat`` will be used.
Warning:
This decoder will not predict the final class which is assumed to be
`<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>`
is also ignored by loss
"""
def __init__(self,
num_classes=None,
rnn_layers=2,
dim_input=512,
dim_model=128,
max_seq_len=40,
mask=True,
return_feature=False,
encode_value=False):
super().__init__()
self.num_classes = num_classes
self.dim_input = dim_input
self.dim_model = dim_model
self.max_seq_len = max_seq_len
self.return_feature = return_feature
self.encode_value = encode_value
self.mask = mask
self.embedding = nn.Embedding(self.max_seq_len + 1, self.dim_model)
self.position_aware_module = PositionAwareLayer(
self.dim_model, rnn_layers)
self.attention_layer = DotProductAttentionLayer()
self.prediction = None
if not self.return_feature:
pred_num_classes = num_classes - 1
self.prediction = nn.Linear(
dim_model if encode_value else dim_input, pred_num_classes)
def _get_position_index(self, length, batch_size):
position_index_list = []
for i in range(batch_size):
position_index = torch.range(0, length, step=1, dtype='int64')
position_index_list.append(position_index)
batch_position_index = torch.stack(position_index_list, dim=0)
return batch_position_index
def forward_train(self, feat, out_enc, targets, valid_ratios,
position_index):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
targets (dict): A dict with the key ``padded_targets``, a
tensor of shape :math:`(N, T)`. Each element is the index of a
character.
valid_ratios (Tensor): valid length ratio of img.
position_index (Tensor): The position of each word.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)` if
``return_feature=False``. Otherwise it will be the hidden feature
before the prediction projection layer, whose shape is
:math:`(N, T, D_m)`.
"""
n, c_enc, h, w = out_enc.shape
assert c_enc == self.dim_model
_, c_feat, _, _ = feat.shape
assert c_feat == self.dim_input
_, len_q = targets.shape
assert len_q <= self.max_seq_len
position_out_enc = self.position_aware_module(out_enc)
query = self.embedding(position_index)
query = query.permute(0, 2, 1).contiguous()
key = position_out_enc.view(n, c_enc, h * w)
if self.encode_value:
value = out_enc.view(n, c_enc, h * w)
else:
value = feat.view(n, c_feat, h * w)
mask = None
if valid_ratios is not None:
mask = query.new_zeros((n, h, w))
for i, valid_ratio in enumerate(valid_ratios):
valid_width = min(w, math.ceil(w * valid_ratio))
mask[i, :, valid_width:] = 1
mask = mask.bool()
mask = mask.view(n, h * w)
attn_out = self.attention_layer(query, key, value, mask)
attn_out = attn_out.permute(0, 2, 1).contiguous()
if self.return_feature:
return attn_out
return self.prediction(attn_out)
def forward_test(self, feat, out_enc, valid_ratios, position_index):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
valid_ratios (Tensor): valid length ratio of img
position_index (Tensor): The position of each word.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)` if
``return_feature=False``. Otherwise it would be the hidden feature
before the prediction projection layer, whose shape is
:math:`(N, T, D_m)`.
"""
n, c_enc, h, w = out_enc.shape
assert c_enc == self.dim_model
_, c_feat, _, _ = feat.shape
assert c_feat == self.dim_input
position_out_enc = self.position_aware_module(out_enc)
query = self.embedding(position_index)
query = query.permute(0, 2, 1).contiguous()
key = position_out_enc.view(n, c_enc, h * w)
if self.encode_value:
value = torch.reshape(out_enc, (n, c_enc, h * w))
else:
value = torch.reshape(feat, (n, c_feat, h * w))
mask = None
if valid_ratios is not None:
mask = query.new_zeros((n, h, w))
for i, valid_ratio in enumerate(valid_ratios):
valid_width = min(w, math.ceil(w * valid_ratio))
mask[i, :, valid_width:] = 1
mask = mask.bool()
mask = mask.view(n, h * w)
attn_out = self.attention_layer(query, key, value, mask)
attn_out = attn_out.transpose(1, 2) # [n, len_q, dim_v]
if self.return_feature:
return attn_out
return self.prediction(attn_out)
class RobustScannerFusionLayer(nn.Module):
def __init__(self, dim_model, dim=-1):
super(RobustScannerFusionLayer, self).__init__()
self.dim_model = dim_model
self.dim = dim
self.linear_layer = nn.Linear(dim_model * 2, dim_model * 2)
def forward(self, x0, x1):
assert x0.shape == x1.shape
fusion_input = torch.concat((x0, x1), self.dim)
output = self.linear_layer(fusion_input)
output = F.glu(output, self.dim)
return output
class Decoder(BaseDecoder):
"""Decoder for RobustScanner.
RobustScanner: `RobustScanner: Dynamically Enhancing Positional Clues for
Robust Text Recognition <https://arxiv.org/abs/2007.07542>`_
Args:
num_classes (int): Number of output classes :math:`C`.
dim_input (int): Dimension :math:`D_i` of input vector ``feat``.
dim_model (int): Dimension :math:`D_m` of the model. Should also be the
same as encoder output vector ``out_enc``.
max_seq_len (int): Maximum output sequence length :math:`T`.
start_idx (int): The index of `<SOS>`.
mask (bool): Whether to mask input features according to
``img_meta['valid_ratio']``.
padding_idx (int): The index of `<PAD>`.
encode_value (bool): Whether to use the output of encoder ``out_enc``
as `value` of attention layer. If False, the original feature
``feat`` will be used.
Warning:
This decoder will not predict the final class which is assumed to be
`<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>`
is also ignored by loss as specified in
:obj:`mmocr.models.textrecog.recognizer.EncodeDecodeRecognizer`.
"""
def __init__(self,
num_classes=None,
dim_input=512,
dim_model=128,
hybrid_decoder_rnn_layers=2,
hybrid_decoder_dropout=0,
position_decoder_rnn_layers=2,
max_len=40,
start_idx=0,
mask=True,
padding_idx=None,
end_idx=0,
encode_value=False):
super().__init__()
self.num_classes = num_classes
self.dim_input = dim_input
self.dim_model = dim_model
self.max_seq_len = max_len
self.encode_value = encode_value
self.start_idx = start_idx
self.padding_idx = padding_idx
self.end_idx = end_idx
self.mask = mask
# init hybrid decoder
self.hybrid_decoder = SequenceAttentionDecoder(
num_classes=num_classes,
rnn_layers=hybrid_decoder_rnn_layers,
dim_input=dim_input,
dim_model=dim_model,
max_seq_len=max_len,
start_idx=start_idx,
mask=mask,
padding_idx=padding_idx,
dropout=hybrid_decoder_dropout,
encode_value=encode_value,
return_feature=True)
# init position decoder
self.position_decoder = PositionAttentionDecoder(
num_classes=num_classes,
rnn_layers=position_decoder_rnn_layers,
dim_input=dim_input,
dim_model=dim_model,
max_seq_len=max_len,
mask=mask,
encode_value=encode_value,
return_feature=True)
self.fusion_module = RobustScannerFusionLayer(
self.dim_model if encode_value else dim_input)
pred_num_classes = num_classes
self.prediction = nn.Linear(dim_model if encode_value else dim_input,
pred_num_classes)
def forward_train(self, feat, out_enc, target, valid_ratios,
word_positions):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
target (dict): A dict with the key ``padded_targets``, a
tensor of shape :math:`(N, T)`. Each element is the index of a
character.
valid_ratios (Tensor):
word_positions (Tensor): The position of each word.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`.
"""
hybrid_glimpse = self.hybrid_decoder.forward_train(
feat, out_enc, target, valid_ratios)
position_glimpse = self.position_decoder.forward_train(
feat, out_enc, target, valid_ratios, word_positions)
fusion_out = self.fusion_module(hybrid_glimpse, position_glimpse)
out = self.prediction(fusion_out)
return out
def forward_test(self, feat, out_enc, valid_ratios, word_positions):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
valid_ratios (Tensor):
word_positions (Tensor): The position of each word.
Returns:
Tensor: The output logit sequence tensor of shape
:math:`(N, T, C-1)`.
"""
seq_len = self.max_seq_len
batch_size = feat.shape[0]
decode_sequence = (torch.ones(
(batch_size, seq_len), dtype=torch.int64, device=feat.device) *
self.start_idx)
position_glimpse = self.position_decoder.forward_test(
feat, out_enc, valid_ratios, word_positions)
outputs = []
for i in range(seq_len):
hybrid_glimpse_step = self.hybrid_decoder.forward_test_step(
feat, out_enc, decode_sequence, i, valid_ratios)
fusion_out = self.fusion_module(hybrid_glimpse_step,
position_glimpse[:, i, :])
char_out = self.prediction(fusion_out)
char_out = F.softmax(char_out, -1)
outputs.append(char_out)
max_idx = torch.argmax(char_out, dim=1, keepdim=False)
if i < seq_len - 1:
decode_sequence[:, i + 1] = max_idx
if (decode_sequence == self.end_idx).any(dim=-1).all():
break
outputs = torch.stack(outputs, 1)
return outputs
|