File size: 22,459 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import ones_, trunc_normal_, zeros_

from openrec.modeling.common import DropPath, Identity
from openrec.modeling.decoders.cppd_decoder import DecoderLayer
from openrec.modeling.decoders.nrtr_decoder import Embeddings


class CrossAttention(nn.Module):

    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, q, kv, key_mask=None):
        N, C = kv.shape[1:]
        QN = q.shape[1]
        q = self.q(q).reshape([-1, QN, self.num_heads,
                               C // self.num_heads]).transpose(1, 2)
        q = q * self.scale
        k, v = self.kv(kv).reshape(
            [-1, N, 2, self.num_heads,
             C // self.num_heads]).permute(2, 0, 3, 1, 4)

        attn = q.matmul(k.transpose(2, 3))

        if key_mask is not None:
            attn = attn + key_mask.unsqueeze(1)

        attn = F.softmax(attn, -1)
        if not self.training:
            self.attn_map = attn
        attn = self.attn_drop(attn)

        x = (attn.matmul(v)).transpose(1, 2).reshape((-1, QN, C))
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SSMatchLayer(nn.Module):

    def __init__(
        self,
        dim,
        nextq2subs_head2=None,
        dynq2img_heads=2,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        num_layer=2,
        epsilon=1e-6,
    ):
        super().__init__()
        self.dim = dim
        if nextq2subs_head2 is None:
            nextq2subs_head2 = dim // 32
        self.normq1 = nn.LayerNorm(dim, eps=epsilon)
        self.normkv1 = nn.LayerNorm(dim, eps=epsilon)
        self.images_to_question_cross_attn = CrossAttention(
            dim,
            num_heads=nextq2subs_head2,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop)
        self.normq2 = nn.LayerNorm(dim, eps=epsilon)
        # self.normkv2 = nn.LayerNorm(dim, eps=epsilon)
        dpr = np.linspace(0, drop_path, num_layer)
        self.question_to_images_cross_attn = nn.ModuleList([
            DecoderLayer(
                dim=dim,
                num_heads=dynq2img_heads,
                mlp_ratio=4.0,
                qkv_bias=True,
                drop_path=dpr[i],
                act_layer=act_layer,
            ) for i in range(num_layer)
        ])
        # CrossAttention(
        #     dim,
        #     num_heads=dynq2img_heads,
        #     qkv_bias=qkv_bias,
        #     qk_scale=qk_scale,
        #     attn_drop=attn_drop,
        #     proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()

    def forward(self, question_f, prompt_f, visual_f, mask=None):

        question_f = question_f + self.drop_path(
            self.images_to_question_cross_attn(self.normq1(question_f),
                                               self.normkv1(prompt_f), mask))
        question_f = question_f.reshape(visual_f.shape[0], -1, self.dim)
        question_f = self.normq2(question_f)
        # kv = self.normkv2(visual_f)
        for layer in self.question_to_images_cross_attn:
            question_f = layer(question_f, visual_f)

        return question_f


class SMTRDecoderNumAttn(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 num_layer=2,
                 nextq2subs_head2=None,
                 dynq2img_heads=2,
                 drop_path_rate=0.1,
                 max_len=25,
                 vis_seq=50,
                 ds=False,
                 pos2d=False,
                 max_size=[8, 32],
                 sub_str_len=5,
                 next_mode=True,
                 infer_aug=False,
                 **kwargs):
        super(SMTRDecoderNumAttn, self).__init__()

        self.out_channels = out_channels
        dim = in_channels
        self.dim = dim
        self.max_len = max_len + 3  # max_len + eos + bos
        self.char_embed = Embeddings(d_model=dim,
                                     vocab=self.out_channels,
                                     scale_embedding=True)
        self.ignore_index = out_channels - 1
        self.sub_str_len = sub_str_len
        self.bos_next = out_channels - 3
        self.bos_pre = out_channels - 2
        self.eos = 0
        self.next_mode = next_mode
        self.infer_aug = infer_aug
        self.cmff_decoder = SSMatchLayer(dim=dim,
                                         nextq2subs_head2=nextq2subs_head2,
                                         dynq2img_heads=dynq2img_heads,
                                         mlp_ratio=4.0,
                                         qkv_bias=True,
                                         drop_path=drop_path_rate,
                                         num_layer=num_layer)

        self.ds = ds
        self.pos2d = pos2d
        if not ds:
            self.vis_pos_embed = nn.Parameter(torch.zeros([1, vis_seq, dim],
                                                          dtype=torch.float32),
                                              requires_grad=True)
            trunc_normal_(self.vis_pos_embed, std=0.02)
        elif pos2d:
            pos_embed = torch.zeros([1, max_size[0] * max_size[1], dim],
                                    dtype=torch.float32)
            trunc_normal_(pos_embed, mean=0, std=0.02)
            self.vis_pos_embed = nn.Parameter(pos_embed.transpose(
                1, 2).reshape(1, dim, max_size[0], max_size[1]),
                                              requires_grad=True)

        self.next_token = nn.Parameter(torch.zeros([1, 1, 1, dim],
                                                   dtype=torch.float32),
                                       requires_grad=True)

        self.pre_token = nn.Parameter(torch.zeros([1, 1, 1, dim],
                                                  dtype=torch.float32),
                                      requires_grad=True)

        self.prompt_next_embed = nn.Parameter(torch.zeros(
            [1, 1, self.sub_str_len + 1, dim], dtype=torch.float32),
                                              requires_grad=True)

        self.prompt_pre_embed = nn.Parameter(torch.zeros(
            [1, 1, self.sub_str_len + 1, dim], dtype=torch.float32),
                                             requires_grad=True)

        self.norm_pred = nn.LayerNorm(dim, eps=1e-6)
        self.ques1_head = nn.Linear(dim, self.out_channels - 3)

        trunc_normal_(self.next_token, std=0.02)
        trunc_normal_(self.pre_token, std=0.02)
        trunc_normal_(self.prompt_pre_embed, std=0.02)
        trunc_normal_(self.prompt_next_embed, std=0.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'vis_pos_embed', 'pre_token', 'next_token', 'char_embed'}

    def forward(self, x, data=None):
        if self.training:
            return self.forward_train(x, data)
        else:
            if self.infer_aug:
                return self.forward_test_bi(x)
            return self.forward_test(x)

    def forward_test_bi(self, x):
        # self.attn_maps = []
        if not self.ds:
            visual_f = x + self.vis_pos_embed
        elif self.pos2d:
            visual_f = x + self.vis_pos_embed[:, :, :x.shape[2], :x.shape[3]]
            visual_f = x.flatten(2).transpose(1, 2)
        else:
            visual_f = x
        bs = 2
        if 1:
            next = self.next_token
            pre = self.pre_token
            next_pre = torch.concat([next, pre], 0)
            next_pre = next_pre.squeeze(1)  #2, 1, dim

            prompt_next_embed = self.prompt_next_embed.squeeze(1)
            prompt_pre_embed = self.prompt_pre_embed.squeeze(1)

            next_id = torch.full([1, self.sub_str_len],
                                 self.bos_next,
                                 dtype=torch.long,
                                 device=x.get_device())
            pre_id = torch.full([1, self.sub_str_len],
                                self.bos_pre,
                                dtype=torch.long,
                                device=x.get_device())
            # prompt_next_bos = self.char_embed(prompt_id)
            # pred_prob_list = torch.full([bs, self.sub_str_len], self.ignore_index, dtype=torch.long, device=x.get_device())
            next_pred_id_list = torch.full([1, self.max_len],
                                           self.ignore_index,
                                           dtype=torch.long,
                                           device=x.get_device())
            pre_pred_id_list = torch.full([1, self.max_len],
                                          self.ignore_index,
                                          dtype=torch.long,
                                          device=x.get_device())
            next_logits_all = []
            pre_logits_all = []
            mask_pad = torch.zeros([bs, 1],
                                   dtype=torch.float32,
                                   device=x.get_device())
            for j in range(0, min(70, self.max_len - 1)):

                prompt_char_next = torch.concat([
                    prompt_next_embed[:, :1, :],
                    prompt_next_embed[:, 1:, :] + self.char_embed(next_id)
                ], 1)  # b, sub_l, dim
                prompt_char_pre = torch.concat([
                    prompt_pre_embed[:, :1, :],
                    prompt_pre_embed[:, 1:, :] + self.char_embed(pre_id)
                ], 1)  # b, sub_l, dim
                prompt_char = torch.concat([prompt_char_next, prompt_char_pre],
                                           0)  #2, 6, dim
                # prompt_char = prompt_char.flatten(0, 1)

                mask_next = torch.where(next_id == self.bos_next,
                                        float('-inf'), 0)  # b, subs_l
                mask_pre = torch.where(pre_id == self.bos_pre, float('-inf'),
                                       0)  # b, subs_l
                mask = torch.concat([mask_next, mask_pre], 0)  #2, 5
                mask = torch.concat([mask_pad, mask], 1)  # 2, 6
                pred_token = next_pre
                visual_f_i = visual_f[:2]  # 2 l dim
                pred_token = self.cmff_decoder(pred_token, prompt_char,
                                               visual_f_i, mask.unsqueeze(1))
                logits_next_i = self.ques1_head(self.norm_pred(pred_token))
                logits = F.softmax(logits_next_i, -1)
                pred_id_i = logits.argmax(-1)  #2, 1
                # print(pred_id_i.shape)

                next_pred_id_list[:, j:j + 1] = pred_id_i[:1]
                pre_pred_id_list[:, j:j + 1] = pred_id_i[1:2]
                if not (next_pred_id_list == self.eos).any(dim=-1).all():
                    next_logits_all.append(logits[:1])
                    next_id = torch.concat([next_id[:, 1:], pred_id_i[:1]], 1)
                if not (pre_pred_id_list == self.eos).any(dim=-1).all():
                    pre_logits_all.append(logits[1:2])
                    pre_id = torch.concat([pred_id_i[1:2], pre_id[:, :-1]], 1)

                if (next_pred_id_list == self.eos).any(dim=-1).all() and (
                        pre_pred_id_list == self.eos).any(dim=-1).all():
                    break
                # print(next_id, pre_id)
            # exit(0)
            if len(next_logits_all) > self.sub_str_len and len(
                    pre_logits_all) > self.sub_str_len:
                next_logits_all_ = torch.concat(next_logits_all[:-1],
                                                1)  # 1, l
                pre_logits_all_ = torch.concat(pre_logits_all[:-1][::-1],
                                               1)  #1, l

                next_id = next_logits_all_.argmax(-1)[:, -self.sub_str_len:]
                pre_id = pre_logits_all_.argmax(-1)[:, :self.sub_str_len]
                next_logits_all = []
                ques_next = self.next_token.tile([1, 1, 1, 1]).squeeze(1)
                mask_pad = torch.zeros([1, 1],
                                       dtype=torch.float32,
                                       device=x.get_device())
                for j in range(0, min(70, self.max_len - 1)):

                    prompt_next = torch.concat([
                        prompt_next_embed[:, :1, :],
                        prompt_next_embed[:, 1:, :] + self.char_embed(next_id)
                    ], 1)  # b, sub_l, dim
                    mask_next = torch.where(next_id == self.bos_next,
                                            float('-inf'), 0)  # b, subs_l
                    mask = torch.concat([mask_pad, mask_next], 1)
                    # prompt_next = self.char_embed(prompt_id)
                    ques_next_i = ques_next
                    visual_f_i = visual_f[2:3]
                    ques_next_i = self.cmff_decoder(ques_next_i, prompt_next,
                                                    visual_f_i,
                                                    mask.unsqueeze(1))
                    logits_next_i = self.ques1_head(
                        self.norm_pred(ques_next_i))
                    logits = F.softmax(logits_next_i, -1)
                    pred_id_i = logits.argmax(-1)
                    next_logits_all.append(logits)
                    next_id = torch.concat([next_id[:, 1:, ], pred_id_i], 1)
                    if next_id.equal(pre_id):
                        break
                next_logits_all = torch.concat(next_logits_all, 1)
                next_logits_all_ = torch.concat(
                    [next_logits_all_, next_logits_all], 1)

                return torch.concat(
                    [next_logits_all_, pre_logits_all_[:, self.sub_str_len:]],
                    1)
            else:
                return torch.concat(next_logits_all + pre_logits_all[::-1], 1)

    def forward_test(self, x):
        # self.attn_maps = []
        if not self.ds:
            visual_f = x + self.vis_pos_embed
        elif self.pos2d:
            visual_f = x + self.vis_pos_embed[:, :, :x.shape[2], :x.shape[3]]
            visual_f = x.flatten(2).transpose(1, 2)
        else:
            visual_f = x
        bs = x.shape[0]

        if self.next_mode:
            ques_next = self.next_token.tile([bs, 1, 1, 1]).squeeze(1)
            prompt_next_embed = self.prompt_next_embed.tile([bs, 1, 1,
                                                             1]).squeeze(1)
            prompt_id = torch.full([bs, self.sub_str_len],
                                   self.bos_next,
                                   dtype=torch.long,
                                   device=x.get_device())
            pred_id_list = torch.full([bs, self.max_len],
                                      self.ignore_index,
                                      dtype=torch.long,
                                      device=x.get_device())
            logits_all = []
            mask_pad = torch.zeros([bs, 1],
                                   dtype=torch.float32,
                                   device=x.get_device())
            for j in range(0, self.max_len - 1):

                prompt_next = torch.concat([
                    prompt_next_embed[:, :1, :],
                    prompt_next_embed[:, 1:, :] + self.char_embed(prompt_id)
                ], 1)  # b, sub_l, dim
                mask_next = torch.where(prompt_id == self.bos_next,
                                        float('-inf'), 0)  # b, subs_l
                mask = torch.concat([mask_pad, mask_next], 1)
                ques_next_i = ques_next
                visual_f_i = visual_f
                ques_next_i = self.cmff_decoder(ques_next_i, prompt_next,
                                                visual_f_i, mask.unsqueeze(1))
                # self.attn_maps.append(
                #     self.cmff_decoder[-1].question_to_images_cross_attn.
                #     attn_map[0])
                logits_next_i = self.ques1_head(self.norm_pred(ques_next_i))
                logits = F.softmax(logits_next_i, -1)
                pred_id_i = logits.argmax(-1)
                logits_all.append(logits)
                pred_id_list[:, j:j + 1] = pred_id_i
                if (pred_id_list == self.eos).any(dim=-1).all():
                    break
                prompt_id = torch.concat(
                    [
                        prompt_id[:, 1:, ],
                        pred_id_i,
                    ],
                    1,
                )
            return torch.concat(logits_all, 1)
        else:
            ques_next = self.pre_token.tile([bs, 1, 1, 1]).squeeze(1)
            prompt_pre_embed = self.prompt_pre_embed.tile([bs, 1, 1,
                                                           1]).squeeze(1)
            prompt_id = torch.full([bs, self.sub_str_len],
                                   self.bos_pre,
                                   dtype=torch.long,
                                   device=x.get_device())
            pred_id_list = torch.full([bs, self.max_len],
                                      self.ignore_index,
                                      dtype=torch.long,
                                      device=x.get_device())
            logits_all = []
            mask_pad = torch.zeros([bs, 1],
                                   dtype=torch.float32,
                                   device=x.get_device())
            for j in range(0, self.max_len - 1):

                prompt_next = torch.concat([
                    prompt_pre_embed[:, :1, :],
                    prompt_pre_embed[:, 1:, :] + self.char_embed(prompt_id)
                ], 1)  # b, sub_l, dim
                mask_next = torch.where(prompt_id == self.bos_pre,
                                        float('-inf'), 0)  # b, subs_l
                mask = torch.concat([mask_pad, mask_next], 1)
                ques_next_i = ques_next
                visual_f_i = visual_f
                ques_next_i = self.cmff_decoder(ques_next_i, prompt_next,
                                                visual_f_i, mask.unsqueeze(1))
                logits_next_i = self.ques1_head(self.norm_pred(ques_next_i))
                logits = F.softmax(logits_next_i, -1)
                pred_id_i = logits.argmax(-1)
                logits_all.append(logits)
                pred_id_list[:, j:j + 1] = pred_id_i
                if (pred_id_list == self.eos).any(dim=-1).all():
                    break
                prompt_id = torch.concat(
                    [
                        pred_id_i,
                        prompt_id[:, :-1, ],
                    ],
                    1,
                )
            return torch.concat(logits_all, 1)

    def forward_train(self, x, targets=None):
        bs = x.shape[0]

        if not self.ds:
            visual_f = x + self.vis_pos_embed
        elif self.pos2d:
            visual_f = x + self.vis_pos_embed[:, :, :x.shape[2], :x.shape[3]]
        else:
            visual_f = x
        max_len_curr = targets[3].max()
        subs = targets[1][:, :max_len_curr, :]  # b, n, subs_l
        mask_next = torch.where(subs == self.bos_next, float('-inf'),
                                0)  # b, n, subs_l
        prompt_next_embed = self.prompt_next_embed.tile(
            [bs, max_len_curr, 1, 1])
        prompt_char_next = torch.concat([
            prompt_next_embed[:, :, :1, :],
            prompt_next_embed[:, :, 1:, :] + self.char_embed(subs)
        ], 2)  # b, n, sub_l, dim
        next = self.next_token.tile([bs, max_len_curr, 1, 1])

        max_len_curr_pre = targets[6].max()
        subs = targets[4][:, :max_len_curr_pre, :]  # b, n, subs_l
        mask_pre = torch.where(subs == self.bos_pre, float('-inf'),
                               0)  # b, n, subs_l
        prompt_pre_embed = self.prompt_pre_embed.tile(
            [bs, max_len_curr_pre, 1, 1])
        prompt_char_pre = torch.concat([
            prompt_pre_embed[:, :, :1, :],
            prompt_pre_embed[:, :, 1:, :] + self.char_embed(subs)
        ], 2)  # b, n, sub_l, dim
        pre = self.pre_token.tile([bs, max_len_curr_pre, 1, 1])  # b, n, 1, dim

        prompt_char = torch.concat([prompt_char_next, prompt_char_pre], 1)
        next_pre = torch.concat([next, pre], 1)

        mask_pad = torch.zeros([bs * (max_len_curr + max_len_curr_pre), 1],
                               dtype=torch.float32,
                               device=x.get_device())
        mask = torch.concat([mask_next, mask_pre], 1).flatten(0, 1)
        mask = torch.concat([mask_pad, mask], 1)
        next_pre = next_pre.flatten(0, 1)
        prompt_char = prompt_char.flatten(0, 1)
        next_pre = self.cmff_decoder(next_pre, prompt_char, visual_f,
                                     mask.unsqueeze(1))
        answer1_pred = self.ques1_head(self.norm_pred(next_pre))
        logits = answer1_pred[:, :max_len_curr]

        label = torch.concat(
            [targets[2][:, :max_len_curr], targets[5][:, :max_len_curr_pre]],
            1)
        loss1 = F.cross_entropy(answer1_pred.flatten(0, 1),
                                label.flatten(0, 1),
                                ignore_index=self.ignore_index,
                                reduction='mean')
        loss = {'loss': loss1}
        return [loss, logits]