File size: 7,378 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch.nn as nn

__all__ = ['ResNet31']


def conv3x3(in_channel, out_channel, stride=1):
    return nn.Conv2d(in_channel,
                     out_channel,
                     kernel_size=3,
                     stride=stride,
                     padding=1,
                     bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channels, channels, stride=1, downsample=False):
        super().__init__()
        self.conv1 = conv3x3(in_channels, channels, stride)
        self.bn1 = nn.BatchNorm2d(channels)
        self.relu = nn.ReLU()
        self.conv2 = conv3x3(channels, channels)
        self.bn2 = nn.BatchNorm2d(channels)
        self.downsample = downsample
        if downsample:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels,
                          channels * self.expansion,
                          1,
                          stride,
                          bias=False),
                nn.BatchNorm2d(channels * self.expansion),
            )
        else:
            self.downsample = nn.Sequential()
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNet31(nn.Module):
    """
    Args:
        in_channels (int): Number of channels of input image tensor.
        layers (list[int]): List of BasicBlock number for each stage.
        channels (list[int]): List of out_channels of Conv2d layer.
        out_indices (None | Sequence[int]): Indices of output stages.
        last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
    """

    def __init__(
        self,
        in_channels=3,
        layers=[1, 2, 5, 3],
        channels=[64, 128, 256, 256, 512, 512, 512],
        out_indices=None,
        last_stage_pool=False,
    ):
        super(ResNet31, self).__init__()
        assert isinstance(in_channels, int)
        assert isinstance(last_stage_pool, bool)

        self.out_indices = out_indices
        self.last_stage_pool = last_stage_pool

        # conv 1 (Conv Conv)
        self.conv1_1 = nn.Conv2d(in_channels,
                                 channels[0],
                                 kernel_size=3,
                                 stride=1,
                                 padding=1)
        self.bn1_1 = nn.BatchNorm2d(channels[0])
        self.relu1_1 = nn.ReLU(inplace=True)

        self.conv1_2 = nn.Conv2d(channels[0],
                                 channels[1],
                                 kernel_size=3,
                                 stride=1,
                                 padding=1)
        self.bn1_2 = nn.BatchNorm2d(channels[1])
        self.relu1_2 = nn.ReLU(inplace=True)

        # conv 2 (Max-pooling, Residual block, Conv)
        self.pool2 = nn.MaxPool2d(kernel_size=2,
                                  stride=2,
                                  padding=0,
                                  ceil_mode=True)
        self.block2 = self._make_layer(channels[1], channels[2], layers[0])
        self.conv2 = nn.Conv2d(channels[2],
                               channels[2],
                               kernel_size=3,
                               stride=1,
                               padding=1)
        self.bn2 = nn.BatchNorm2d(channels[2])
        self.relu2 = nn.ReLU(inplace=True)

        # conv 3 (Max-pooling, Residual block, Conv)
        self.pool3 = nn.MaxPool2d(kernel_size=2,
                                  stride=2,
                                  padding=0,
                                  ceil_mode=True)
        self.block3 = self._make_layer(channels[2], channels[3], layers[1])
        self.conv3 = nn.Conv2d(channels[3],
                               channels[3],
                               kernel_size=3,
                               stride=1,
                               padding=1)
        self.bn3 = nn.BatchNorm2d(channels[3])
        self.relu3 = nn.ReLU(inplace=True)

        # conv 4 (Max-pooling, Residual block, Conv)
        self.pool4 = nn.MaxPool2d(kernel_size=(2, 1),
                                  stride=(2, 1),
                                  padding=0,
                                  ceil_mode=True)
        self.block4 = self._make_layer(channels[3], channels[4], layers[2])
        self.conv4 = nn.Conv2d(channels[4],
                               channels[4],
                               kernel_size=3,
                               stride=1,
                               padding=1)
        self.bn4 = nn.BatchNorm2d(channels[4])
        self.relu4 = nn.ReLU(inplace=True)

        # conv 5 ((Max-pooling), Residual block, Conv)
        self.pool5 = None
        if self.last_stage_pool:
            self.pool5 = nn.MaxPool2d(kernel_size=2,
                                      stride=2,
                                      padding=0,
                                      ceil_mode=True)
        self.block5 = self._make_layer(channels[4], channels[5], layers[3])
        self.conv5 = nn.Conv2d(channels[5],
                               channels[5],
                               kernel_size=3,
                               stride=1,
                               padding=1)
        self.bn5 = nn.BatchNorm2d(channels[5])
        self.relu5 = nn.ReLU(inplace=True)

        self.out_channels = channels[-1]

    def _make_layer(self, input_channels, output_channels, blocks):
        layers = []
        for _ in range(blocks):
            downsample = None
            if input_channels != output_channels:
                downsample = nn.Sequential(
                    nn.Conv2d(
                        input_channels,
                        output_channels,
                        kernel_size=1,
                        stride=1,
                        bias=False,
                    ),
                    nn.BatchNorm2d(output_channels),
                )

            layers.append(
                BasicBlock(input_channels,
                           output_channels,
                           downsample=downsample))
            input_channels = output_channels
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1_1(x)
        x = self.bn1_1(x)
        x = self.relu1_1(x)

        x = self.conv1_2(x)
        x = self.bn1_2(x)
        x = self.relu1_2(x)

        outs = []
        for i in range(4):
            layer_index = i + 2
            pool_layer = getattr(self, 'pool{}'.format(layer_index))
            block_layer = getattr(self, 'block{}'.format(layer_index))
            conv_layer = getattr(self, 'conv{}'.format(layer_index))
            bn_layer = getattr(self, 'bn{}'.format(layer_index))
            relu_layer = getattr(self, 'relu{}'.format(layer_index))

            if pool_layer is not None:
                x = pool_layer(x)
            x = block_layer(x)
            x = conv_layer(x)
            x = bn_layer(x)
            x = relu_layer(x)

            outs.append(x)

        if self.out_indices is not None:
            return tuple([outs[i] for i in self.out_indices])

        return x