Spaces:
Running
Running
File size: 15,034 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import numpy as np
import torch
import torch.nn as nn
from torch.nn.init import kaiming_normal_, ones_, trunc_normal_, zeros_
from openrec.modeling.common import DropPath, Identity, Mlp
class ConvBNLayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=0,
bias=False,
groups=1,
act=nn.GELU,
):
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=bias,
)
self.norm = nn.BatchNorm2d(out_channels)
self.act = act()
def forward(self, inputs):
out = self.conv(inputs)
out = self.norm(out)
out = self.act(out)
return out
class ConvMixer(nn.Module):
def __init__(
self,
dim,
num_heads=8,
local_k=[5, 5],
):
super().__init__()
self.local_mixer = nn.Conv2d(dim, dim, 5, 1, 2, groups=num_heads)
def forward(self, x, mask=None):
x = self.local_mixer(x)
return x
class ConvMlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
groups=1,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, groups=groups)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
self.dim = dim
self.head_dim = dim // num_heads
self.scale = qk_scale or self.head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, mask=None):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = q @ k.transpose(-2, -1) * self.scale
if mask is not None:
attn += mask.unsqueeze(0)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, self.dim)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mixer='Global',
local_k=[7, 11],
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
eps=1e-6,
):
super().__init__()
mlp_hidden_dim = int(dim * mlp_ratio)
if mixer == 'Global' or mixer == 'Local':
self.norm1 = norm_layer(dim, eps=eps)
self.mixer = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.norm2 = norm_layer(dim, eps=eps)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
elif mixer == 'Conv':
self.norm1 = nn.BatchNorm2d(dim)
self.mixer = ConvMixer(dim, num_heads=num_heads, local_k=local_k)
self.norm2 = nn.BatchNorm2d(dim)
self.mlp = ConvMlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
else:
raise TypeError('The mixer must be one of [Global, Local, Conv]')
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
def forward(self, x, mask=None):
x = self.norm1(x + self.drop_path(self.mixer(x, mask=mask)))
x = self.norm2(x + self.drop_path(self.mlp(x)))
return x
class FlattenTranspose(nn.Module):
def forward(self, x, mask=None):
return x.flatten(2).transpose(1, 2)
class SVTRStage(nn.Module):
def __init__(self,
feat_maxSize=[16, 128],
dim=64,
out_dim=256,
depth=3,
mixer=['Local'] * 3,
local_k=[7, 11],
sub_k=[2, 1],
num_heads=2,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path=[0.1] * 3,
norm_layer=nn.LayerNorm,
act=nn.GELU,
eps=1e-6,
downsample=None,
**kwargs):
super().__init__()
self.dim = dim
conv_block_num = sum([1 if mix == 'Conv' else 0 for mix in mixer])
if conv_block_num == depth:
self.mask = None
conv_block_num = 0
if downsample:
self.sub_norm = nn.BatchNorm2d(out_dim, eps=eps)
else:
if 'Local' in mixer:
mask = self.get_max2d_mask(feat_maxSize[0], feat_maxSize[1],
local_k)
self.register_buffer('mask', mask)
else:
self.mask = None
if downsample:
self.sub_norm = norm_layer(out_dim, eps=eps)
self.blocks = nn.ModuleList()
for i in range(depth):
self.blocks.append(
Block(
dim=dim,
num_heads=num_heads,
mixer=mixer[i],
local_k=local_k,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=act,
attn_drop=attn_drop_rate,
drop_path=drop_path[i],
norm_layer=norm_layer,
eps=eps,
))
if i == conv_block_num - 1:
self.blocks.append(FlattenTranspose())
if downsample:
self.downsample = nn.Conv2d(dim,
out_dim,
kernel_size=3,
stride=sub_k,
padding=1)
else:
self.downsample = None
def get_max2d_mask(self, H, W, local_k):
hk, wk = local_k
mask = torch.ones(H * W,
H + hk - 1,
W + wk - 1,
dtype=torch.float32,
requires_grad=False)
for h in range(0, H):
for w in range(0, W):
mask[h * W + w, h:h + hk, w:w + wk] = 0.0
mask = mask[:, hk // 2:H + hk // 2, wk // 2:W + wk // 2] # .flatten(1)
mask[mask >= 1] = -np.inf
return mask.reshape(H, W, H, W)
def get_2d_mask(self, H1, W1):
if H1 == self.mask.shape[0] and W1 == self.mask.shape[1]:
return self.mask.flatten(0, 1).flatten(1, 2).unsqueeze(0)
h_slice = H1 // 2
offet_h = H1 - 2 * h_slice
w_slice = W1 // 2
offet_w = W1 - 2 * w_slice
mask1 = self.mask[:h_slice + offet_h, :w_slice, :H1, :W1]
mask2 = self.mask[:h_slice + offet_h, -w_slice:, :H1, -W1:]
mask3 = self.mask[-h_slice:, :(w_slice + offet_w), -H1:, :W1]
mask4 = self.mask[-h_slice:, -(w_slice + offet_w):, -H1:, -W1:]
mask_top = torch.concat([mask1, mask2], 1)
mask_bott = torch.concat([mask3, mask4], 1)
mask = torch.concat([mask_top.flatten(2), mask_bott.flatten(2)], 0)
return mask.flatten(0, 1).unsqueeze(0)
def forward(self, x, sz=None):
if self.mask is not None:
mask = self.get_2d_mask(sz[0], sz[1])
else:
mask = self.mask
for blk in self.blocks:
x = blk(x, mask=mask)
if self.downsample is not None:
if x.dim() == 3:
x = x.transpose(1, 2).reshape(-1, self.dim, sz[0], sz[1])
x = self.downsample(x)
sz = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
else:
x = self.downsample(x)
sz = x.shape[2:]
x = self.sub_norm(x)
return x, sz
class POPatchEmbed(nn.Module):
"""Image to Patch Embedding."""
def __init__(self,
in_channels=3,
feat_max_size=[8, 32],
embed_dim=768,
use_pos_embed=False,
flatten=False):
super().__init__()
self.patch_embed = nn.Sequential(
ConvBNLayer(
in_channels=in_channels,
out_channels=embed_dim // 2,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
ConvBNLayer(
in_channels=embed_dim // 2,
out_channels=embed_dim,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias=None,
),
)
self.use_pos_embed = use_pos_embed
self.flatten = flatten
if use_pos_embed:
pos_embed = torch.zeros(
[1, feat_max_size[0] * feat_max_size[1], embed_dim],
dtype=torch.float32)
trunc_normal_(pos_embed, mean=0, std=0.02)
self.pos_embed = nn.Parameter(
pos_embed.transpose(1,
2).reshape(1, embed_dim, feat_max_size[0],
feat_max_size[1]),
requires_grad=True,
)
def forward(self, x):
x = self.patch_embed(x)
sz = x.shape[2:]
if self.use_pos_embed:
x = x + self.pos_embed[:, :, :sz[0], :sz[1]]
if self.flatten:
x = x.flatten(2).transpose(1, 2)
return x, sz
class SVTRv2(nn.Module):
def __init__(self,
max_sz=[32, 128],
in_channels=3,
out_channels=192,
depths=[3, 6, 3],
dims=[64, 128, 256],
mixer=[['Local'] * 3, ['Local'] * 3 + ['Global'] * 3,
['Global'] * 3],
use_pos_embed=True,
local_k=[[7, 11], [7, 11], [-1, -1]],
sub_k=[[1, 1], [2, 1], [1, 1]],
num_heads=[2, 4, 8],
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
last_drop=0.1,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
act=nn.GELU,
last_stage=False,
eps=1e-6,
**kwargs):
super().__init__()
num_stages = len(depths)
self.num_features = dims[-1]
feat_max_size = [max_sz[0] // 4, max_sz[1] // 4]
self.pope = POPatchEmbed(in_channels=in_channels,
feat_max_size=feat_max_size,
embed_dim=dims[0],
use_pos_embed=use_pos_embed,
flatten=mixer[0][0] != 'Conv')
dpr = np.linspace(0, drop_path_rate,
sum(depths)) # stochastic depth decay rule
self.stages = nn.ModuleList()
for i_stage in range(num_stages):
stage = SVTRStage(
feat_maxSize=feat_max_size,
dim=dims[i_stage],
out_dim=dims[i_stage + 1] if i_stage < num_stages - 1 else 0,
depth=depths[i_stage],
mixer=mixer[i_stage],
local_k=local_k[i_stage],
sub_k=sub_k[i_stage],
num_heads=num_heads[i_stage],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],
norm_layer=norm_layer,
act=act,
downsample=False if i_stage == num_stages - 1 else True,
eps=eps,
)
self.stages.append(stage)
feat_max_size = [
feat_max_size[0] // sub_k[i_stage][0],
feat_max_size[1] // sub_k[i_stage][1]
]
self.out_channels = self.num_features
self.last_stage = last_stage
if last_stage:
self.out_channels = out_channels
self.last_conv = nn.Linear(self.num_features,
self.out_channels,
bias=False)
self.hardswish = nn.Hardswish()
self.dropout = nn.Dropout(p=last_drop)
self.apply(self._init_weights)
def _init_weights(self, m: nn.Module):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, mean=0, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
if isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
if isinstance(m, nn.Conv2d):
kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
@torch.jit.ignore
def no_weight_decay(self):
return {'patch_embed', 'downsample', 'pos_embed'}
def forward(self, x):
x, sz = self.pope(x)
for stage in self.stages:
x, sz = stage(x, sz)
if self.last_stage:
x = x.reshape(-1, sz[0], sz[1], self.num_features)
x = x.mean(1)
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
return x
|