File size: 8,864 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F

from openrec.modeling.common import Activation


class ConvBNLayer(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__()
        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            bias=False,
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.act = Activation(act) if act else None

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.act is not None:
            x = self.act(x)
        return x


class LocalizationNetwork(nn.Module):

    def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
        super(LocalizationNetwork, self).__init__()
        self.F = num_fiducial
        F = num_fiducial
        if model_name == 'large':
            num_filters_list = [64, 128, 256, 512]
            fc_dim = 256
        else:
            num_filters_list = [16, 32, 64, 128]
            fc_dim = 64

        self.block_list = nn.ModuleList()
        for fno in range(0, len(num_filters_list)):
            num_filters = num_filters_list[fno]
            conv = ConvBNLayer(
                in_channels=in_channels,
                out_channels=num_filters,
                kernel_size=3,
                act='relu',
            )
            self.block_list.append(conv)
            if fno == len(num_filters_list) - 1:
                pool = nn.AdaptiveAvgPool2d(1)
            else:
                pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
            in_channels = num_filters
            self.block_list.append(pool)
        self.fc1 = nn.Linear(in_channels, fc_dim)

        # Init fc2 in LocalizationNetwork
        self.fc2 = nn.Linear(fc_dim, F * 2)

        initial_bias = self.get_initial_fiducials()
        initial_bias = initial_bias.reshape(-1)
        self.fc2.bias.data = torch.tensor(initial_bias, dtype=torch.float32)
        nn.init.zeros_(self.fc2.weight.data)
        self.out_channels = F * 2

    def forward(self, x):
        """
        Estimating parameters of geometric transformation
        Args:
            image: input
        Return:
            batch_C_prime: the matrix of the geometric transformation
        """
        for block in self.block_list:
            x = block(x)
        x = x.squeeze(dim=2).squeeze(dim=2)
        x = self.fc1(x)

        x = F.relu(x)
        x = self.fc2(x)
        x = x.reshape(shape=[-1, self.F, 2])
        return x

    def get_initial_fiducials(self):
        """see RARE paper Fig.

        6 (a)
        """
        F = self.F
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
        ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
        ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        return initial_bias


class GridGenerator(nn.Module):

    def __init__(self, in_channels, num_fiducial):
        super(GridGenerator, self).__init__()
        self.eps = 1e-6
        self.F = num_fiducial

        self.fc = nn.Linear(in_channels, 6)
        nn.init.constant_(self.fc.weight, 0)
        nn.init.constant_(self.fc.bias, 0)
        self.fc.weight.requires_grad = False
        self.fc.bias.requires_grad = False

    def forward(self, batch_C_prime, I_r_size):
        """Generate the grid for the grid_sampler.

        Args:
            batch_C_prime: the matrix of the geometric transformation
            I_r_size: the shape of the input image
        Return:
            batch_P_prime: the grid for the grid_sampler
        """
        C = self.build_C_paddle()
        P = self.build_P_paddle(I_r_size)

        inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).float()
        P_hat_tensor = self.build_P_hat_paddle(C, torch.tensor(P)).float()

        batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)

        batch_C_prime_with_zeros = torch.cat(
            [batch_C_prime, batch_C_ex_part_tensor], dim=1)
        batch_T = torch.matmul(
            inv_delta_C_tensor.to(batch_C_prime_with_zeros.device),
            batch_C_prime_with_zeros,
        )
        batch_P_prime = torch.matmul(P_hat_tensor.to(batch_T.device), batch_T)
        return batch_P_prime

    def build_C_paddle(self):
        """Return coordinates of fiducial points in I_r; C."""
        F = self.F
        ctrl_pts_x = torch.linspace(-1.0, 1.0, int(F / 2), dtype=torch.float64)
        ctrl_pts_y_top = -1 * torch.ones([int(F / 2)], dtype=torch.float64)
        ctrl_pts_y_bottom = torch.ones([int(F / 2)], dtype=torch.float64)
        ctrl_pts_top = torch.stack([ctrl_pts_x, ctrl_pts_y_top], dim=1)
        ctrl_pts_bottom = torch.stack([ctrl_pts_x, ctrl_pts_y_bottom], dim=1)
        C = torch.cat([ctrl_pts_top, ctrl_pts_bottom], dim=0)
        return C  # F x 2

    def build_P_paddle(self, I_r_size):
        I_r_height, I_r_width = I_r_size
        I_r_grid_x = (torch.arange(-I_r_width, I_r_width, 2) +
                      1.0) / torch.tensor(np.array([I_r_width]))

        I_r_grid_y = (torch.arange(-I_r_height, I_r_height, 2) +
                      1.0) / torch.tensor(np.array([I_r_height]))

        # P: self.I_r_width x self.I_r_height x 2
        P = torch.stack(torch.meshgrid(I_r_grid_x, I_r_grid_y), dim=2)
        P = torch.permute(P, [1, 0, 2])
        # n (= self.I_r_width x self.I_r_height) x 2
        return P.reshape([-1, 2])

    def build_inv_delta_C_paddle(self, C):
        """Return inv_delta_C which is needed to calculate T."""
        F = self.F
        hat_eye = torch.eye(F)  # F x F
        hat_C = torch.norm(C.reshape([1, F, 2]) - C.reshape([F, 1, 2]),
                           dim=2) + hat_eye
        hat_C = (hat_C**2) * torch.log(hat_C)
        delta_C = torch.cat(  # F+3 x F+3
            [
                torch.cat([torch.ones((F, 1)), C, hat_C], dim=1),  # F x F+3
                torch.concat([torch.zeros(
                    (2, 3)), C.transpose(0, 1)], dim=1),  # 2 x F+3
                torch.concat([torch.zeros(
                    (1, 3)), torch.ones((1, F))], dim=1),  # 1 x F+3
            ],
            axis=0,
        )
        inv_delta_C = torch.inverse(delta_C)
        return inv_delta_C  # F+3 x F+3

    def build_P_hat_paddle(self, C, P):
        F = self.F
        eps = self.eps
        n = P.shape[0]  # n (= self.I_r_width x self.I_r_height)
        # P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
        P_tile = torch.tile(torch.unsqueeze(P, dim=1), (1, F, 1))
        C_tile = torch.unsqueeze(C, dim=0)  # 1 x F x 2
        P_diff = P_tile - C_tile  # n x F x 2
        # rbf_norm: n x F
        rbf_norm = torch.norm(P_diff, p=2, dim=2, keepdim=False)

        # rbf: n x F
        rbf = torch.multiply(torch.square(rbf_norm), torch.log(rbf_norm + eps))
        P_hat = torch.cat([torch.ones((n, 1)), P, rbf], dim=1)
        return P_hat  # n x F+3

    def get_expand_tensor(self, batch_C_prime):
        B, H, C = batch_C_prime.shape
        batch_C_prime = batch_C_prime.reshape([B, H * C])
        batch_C_ex_part_tensor = self.fc(batch_C_prime)
        batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
        return batch_C_ex_part_tensor


class TPS(nn.Module):

    def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
        super(TPS, self).__init__()
        self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
                                           model_name)
        self.grid_generator = GridGenerator(self.loc_net.out_channels,
                                            num_fiducial)
        self.out_channels = in_channels

    def forward(self, image):
        image.stop_gradient = False
        batch_C_prime = self.loc_net(image)
        batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
        batch_P_prime = batch_P_prime.reshape(
            [-1, image.shape[2], image.shape[3], 2])
        is_fp16 = False
        if batch_P_prime.dtype != torch.float32:
            data_type = batch_P_prime.dtype
            image = image.float()
            batch_P_prime = batch_P_prime.float()
            is_fp16 = True
        batch_I_r = F.grid_sample(image, grid=batch_P_prime)
        if is_fp16:
            batch_I_r = batch_I_r.astype(data_type)

        return batch_I_r