Spaces:
Running
Running
File size: 17,381 Bytes
29f689c 695a4a4 29f689c 695a4a4 29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from pathlib import Path
import time
import numpy as np
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
import cv2
import json
import torch
from tools.engine import Config
from tools.utility import ArgsParser
from tools.utils.ckpt import load_ckpt
from tools.utils.logging import get_logger
from tools.utils.utility import get_image_file_list
logger = get_logger()
root_dir = Path(__file__).resolve().parent
DEFAULT_CFG_PATH_DET = str(root_dir / '../configs/det/dbnet/repvit_db.yml')
MODEL_NAME_DET = './openocr_det_repvit_ch.pth' # 模型文件名称
DOWNLOAD_URL_DET = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_det_repvit_ch.pth' # 模型文件 URL
def check_and_download_model(model_name: str, url: str):
"""
检查预训练模型是否存在,若不存在则从指定 URL 下载到固定缓存目录。
Args:
model_name (str): 模型文件的名称,例如 "model.pt"
url (str): 模型文件的下载地址
Returns:
str: 模型文件的完整路径
"""
if os.path.exists(model_name):
return model_name
# 固定缓存路径为用户主目录下的 ".cache/openocr"
cache_dir = Path.home() / '.cache' / 'openocr'
model_path = cache_dir / model_name
# 如果模型文件已存在,直接返回路径
if model_path.exists():
logger.info(f'Model already exists at: {model_path}')
return str(model_path)
# 如果文件不存在,下载模型
logger.info(f'Model not found. Downloading from {url}...')
# 创建缓存目录(如果不存在)
cache_dir.mkdir(parents=True, exist_ok=True)
try:
# 下载文件
import urllib.request
with urllib.request.urlopen(url) as response, open(model_path,
'wb') as out_file:
out_file.write(response.read())
logger.info(f'Model downloaded and saved at: {model_path}')
return str(model_path)
except Exception as e:
logger.error(f'Error downloading the model: {e}')
# 提示用户手动下载
logger.error(
f'Unable to download the model automatically. '
f'Please download the model manually from the following URL:\n{url}\n'
f'and save it to: {model_name} or {model_path}')
raise RuntimeError(
f'Failed to download the model. Please download it manually from {url} '
f'and save it to {model_path}') from e
def replace_batchnorm(net):
for child_name, child in net.named_children():
if hasattr(child, 'fuse'):
fused = child.fuse()
setattr(net, child_name, fused)
replace_batchnorm(fused)
elif isinstance(child, torch.nn.BatchNorm2d):
setattr(net, child_name, torch.nn.Identity())
else:
replace_batchnorm(child)
def padding_image(img, size=(640, 640)):
"""
Padding an image using OpenCV:
- If the image is smaller than the target size, pad it to 640x640.
- If the image is larger than the target size, split it into multiple 640x640 images and record positions.
:param image_path: Path to the input image.
:param output_dir: Directory to save the output images.
:param size: The target size for padding or splitting (default 640x640).
:return: List of tuples containing the coordinates of the top-left corner of each cropped 640x640 image.
"""
img_height, img_width = img.shape[:2]
target_width, target_height = size
# If image is smaller than target size, pad the image to 640x640
# Calculate padding amounts (top, bottom, left, right)
pad_top = 0
pad_bottom = target_height - img_height
pad_left = 0
pad_right = target_width - img_width
# Pad the image (white padding, border type: constant)
padded_img = cv2.copyMakeBorder(img,
pad_top,
pad_bottom,
pad_left,
pad_right,
cv2.BORDER_CONSTANT,
value=[0, 0, 0])
# Return the padded area positions (top-left and bottom-right coordinates of the original image)
return padded_img
def resize_image(img, size=(640, 640), over_lap=64):
"""
Resize an image using OpenCV:
- If the image is smaller than the target size, pad it to 640x640.
- If the image is larger than the target size, split it into multiple 640x640 images and record positions.
:param image_path: Path to the input image.
:param output_dir: Directory to save the output images.
:param size: The target size for padding or splitting (default 640x640).
:return: List of tuples containing the coordinates of the top-left corner of each cropped 640x640 image.
"""
img_height, img_width = img.shape[:2]
target_width, target_height = size
# If image is smaller than target size, pad the image to 640x640
if img_width <= target_width and img_height <= target_height:
# Calculate padding amounts (top, bottom, left, right)
if img_width == target_width and img_height == target_height:
return [img], [[0, 0, img_width, img_height]]
padded_img = padding_image(img, size)
# Return the padded area positions (top-left and bottom-right coordinates of the original image)
return [padded_img], [[0, 0, img_width, img_height]]
img_height, img_width = img.shape[:2]
# If image is larger than or equal to target size, crop it into 640x640 tiles
crop_positions = []
count = 0
cropped_img_list = []
for top in range(0, img_height - over_lap, target_height - over_lap):
for left in range(0, img_width - over_lap, target_width - over_lap):
# Calculate the bottom and right boundaries for the crop
right = min(left + target_width, img_width)
bottom = min(top + target_height, img_height)
if right >= img_width:
right = img_width
left = max(0, right - target_width)
if bottom >= img_height:
bottom = img_height
top = max(0, bottom - target_height)
# Crop the image
cropped_img = img[top:bottom, left:right]
if bottom - top < target_height or right - left < target_width:
cropped_img = padding_image(cropped_img, size)
count += 1
cropped_img_list.append(cropped_img)
# Record the position of the cropped image
crop_positions.append([left, top, right, bottom])
return cropped_img_list, crop_positions
def restore_preds(preds, crop_positions, original_size):
restored_pred = torch.zeros((1, 1, original_size[0], original_size[1]),
dtype=preds.dtype,
device=preds.device)
count = 0
for cropped_pred, (left, top, right, bottom) in zip(preds, crop_positions):
crop_height = bottom - top
crop_width = right - left
corp_vis_img = cropped_pred[:, :crop_height, :crop_width]
mask = corp_vis_img > 0.3
count += 1
restored_pred[:, :, top:top + crop_height, left:left +
crop_width] += mask[:, :crop_height, :crop_width].to(
preds.dtype)
return restored_pred
def draw_det_res(dt_boxes, img, img_name, save_path):
src_im = img
for box in dt_boxes:
box = np.array(box).astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
if not os.path.exists(save_path):
os.makedirs(save_path)
save_path = os.path.join(save_path, os.path.basename(img_name))
cv2.imwrite(save_path, src_im)
def set_device(device, numId=0):
if device == 'gpu' and torch.cuda.is_available():
device = torch.device(f'cuda:{numId}')
else:
logger.info('GPU is not available, using CPU.')
device = torch.device('cpu')
return device
class OpenDetector(object):
def __init__(self, config=None, numId=0):
"""
初始化函数。
Args:
config (dict, optional): 配置文件,默认为None。如果为None,则使用默认配置文件。
numId (int, optional): 设备编号,默认为0。
Returns:
None
Raises:
无
"""
if config is None:
config = Config(DEFAULT_CFG_PATH_DET).cfg
if not os.path.exists(config['Global']['pretrained_model']):
config['Global']['pretrained_model'] = check_and_download_model(
MODEL_NAME_DET, DOWNLOAD_URL_DET)
from opendet.modeling import build_model as build_det_model
from opendet.postprocess import build_post_process
from opendet.preprocess import create_operators, transform
self.transform = transform
global_config = config['Global']
# build model
self.model = build_det_model(config['Architecture'])
self.model.eval()
load_ckpt(self.model, config)
replace_batchnorm(self.model.backbone)
self.device = set_device(config['Global']['device'], numId=numId)
self.model.to(device=self.device)
# create data ops
transforms = []
for op in config['Eval']['dataset']['transforms']:
op_name = list(op)[0]
if 'Label' in op_name:
continue
elif op_name == 'KeepKeys':
op[op_name]['keep_keys'] = ['image', 'shape']
transforms.append(op)
self.ops = create_operators(transforms, global_config)
# build post process
self.post_process_class = build_post_process(config['PostProcess'],
global_config)
def crop_infer(
self,
img_path=None,
img_numpy_list=None,
img_numpy=None,
):
if img_numpy is not None:
img_numpy_list = [img_numpy]
num_img = 1
elif img_path is not None:
num_img = len(img_path)
elif img_numpy_list is not None:
num_img = len(img_numpy_list)
else:
raise Exception('No input image path or numpy array.')
results = []
for img_idx in range(num_img):
if img_numpy_list is not None:
img = img_numpy_list[img_idx]
data = {'image': img}
elif img_path is not None:
with open(img_path[img_idx], 'rb') as f:
img = f.read()
data = {'image': img}
data = self.transform(data, self.ops[:1])
src_img_ori = data['image']
img_height, img_width = src_img_ori.shape[:2]
target_size = 640
over_lap = 64
if img_height > img_width:
r_h = target_size * 2 - over_lap
r_w = img_width * (target_size * 2 - over_lap) // img_height
else:
r_w = target_size * 2 - over_lap
r_h = img_height * (target_size * 2 - over_lap) // img_width
src_img = cv2.resize(src_img_ori, (r_w, r_h))
shape_list_ori = np.array([[
img_height, img_width,
float(r_h) / img_height,
float(r_w) / img_width
]])
img_height, img_width = src_img.shape[:2]
cropped_img_list, crop_positions = resize_image(src_img,
size=(target_size,
target_size),
over_lap=over_lap)
image_list = []
shape_list = []
for img in cropped_img_list:
batch_i = self.transform({'image': img}, self.ops[-3:-1])
image_list.append(batch_i['image'])
shape_list.append([640, 640, 1, 1])
images = np.array(image_list)
shape_list = np.array(shape_list)
images = torch.from_numpy(images).to(device=self.device)
with torch.no_grad():
t_start = time.time()
preds = self.model(images)
t_cost = time.time() - t_start
preds['maps'] = restore_preds(preds['maps'], crop_positions,
(img_height, img_width))
post_result = self.post_process_class(preds, shape_list_ori)
info = {'boxes': post_result[0]['points'], 'elapse': t_cost}
results.append(info)
return results
def __call__(self,
img_path=None,
img_numpy_list=None,
img_numpy=None,
return_mask=False,
**kwargs):
"""
对输入图像进行处理,并返回处理结果。
Args:
img_path (str, optional): 图像文件路径。默认为 None。
img_numpy_list (list, optional): 图像数据列表,每个元素为 numpy 数组。默认为 None。
img_numpy (numpy.ndarray, optional): 图像数据,numpy 数组格式。默认为 None。
Returns:
list: 包含处理结果的列表。每个元素为一个字典,包含 'boxes' 和 'elapse' 两个键。
'boxes' 的值为检测到的目标框点集,'elapse' 的值为处理时间。
Raises:
Exception: 若没有提供图像路径或 numpy 数组,则抛出异常。
"""
if img_numpy is not None:
img_numpy_list = [img_numpy]
num_img = 1
elif img_path is not None:
img_path = get_image_file_list(img_path)
num_img = len(img_path)
elif img_numpy_list is not None:
num_img = len(img_numpy_list)
else:
raise Exception('No input image path or numpy array.')
results = []
for img_idx in range(num_img):
if img_numpy_list is not None:
img = img_numpy_list[img_idx]
data = {'image': img}
elif img_path is not None:
with open(img_path[img_idx], 'rb') as f:
img = f.read()
data = {'image': img}
data = self.transform(data, self.ops[:1])
batch = self.transform(data, self.ops[1:])
images = np.expand_dims(batch[0], axis=0)
shape_list = np.expand_dims(batch[1], axis=0)
images = torch.from_numpy(images).to(device=self.device)
with torch.no_grad():
t_start = time.time()
preds = self.model(images)
t_cost = time.time() - t_start
post_result = self.post_process_class(preds, shape_list, **kwargs)
info = {'boxes': post_result[0]['points'], 'elapse': t_cost}
if return_mask:
if isinstance(preds['maps'], torch.Tensor):
mask = preds['maps'].detach().cpu().numpy()
else:
mask = preds['maps']
info['mask'] = mask
results.append(info)
return results
@torch.no_grad()
def main(cfg):
is_visualize = cfg['Global'].get('is_visualize', False)
model = OpenDetector(cfg)
save_res_path = './det_results/'
if not os.path.exists(save_res_path):
os.makedirs(save_res_path)
sample_num = 0
with open(save_res_path + '/det_results.txt', 'wb') as fout:
for file in get_image_file_list(cfg['Global']['infer_img']):
preds_result = model(img_path=file)[0]
logger.info('{} infer_img: {}, time cost: {}'.format(
sample_num, file, preds_result['elapse']))
boxes = preds_result['boxes']
dt_boxes_json = []
for box in boxes:
tmp_json = {}
tmp_json['points'] = np.array(box).tolist()
dt_boxes_json.append(tmp_json)
if is_visualize:
src_img = cv2.imread(file)
draw_det_res(boxes, src_img, file, save_res_path)
logger.info('The detected Image saved in {}'.format(
os.path.join(save_res_path, os.path.basename(file))))
otstr = file + '\t' + json.dumps(dt_boxes_json) + '\n'
logger.info('results: {}'.format(json.dumps(dt_boxes_json)))
fout.write(otstr.encode())
sample_num += 1
logger.info(
f"Results saved to {os.path.join(save_res_path, 'det_results.txt')}.)"
)
logger.info('success!')
if __name__ == '__main__':
FLAGS = ArgsParser().parse_args()
cfg = Config(FLAGS.config)
FLAGS = vars(FLAGS)
opt = FLAGS.pop('opt')
cfg.merge_dict(FLAGS)
cfg.merge_dict(opt)
main(cfg.cfg)
|