File size: 7,434 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) Meta Platforms, Inc. and affiliates.

# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import trunc_normal_

from openrec.modeling.common import DropPath


class LayerNorm(nn.Module):
    """ LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
    with shape (batch_size, channels, height, width).
    """

    def __init__(self,
                 normalized_shape,
                 eps=1e-6,
                 data_format='channels_last'):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ['channels_last', 'channels_first']:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape, )

    def forward(self, x):
        if self.data_format == 'channels_last':
            return F.layer_norm(x, self.normalized_shape, self.weight,
                                self.bias, self.eps)
        elif self.data_format == 'channels_first':
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


class GRN(nn.Module):
    """ GRN (Global Response Normalization) layer
    """

    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, inputs, mask=None):
        x = inputs
        if mask is not None:
            x = x * (1. - mask)
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (inputs * Nx) + self.beta + inputs


class Block(nn.Module):
    """ ConvNeXtV2 Block.

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
    """

    def __init__(self, dim, drop_path=0.):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3,
                                groups=dim)  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim,
            4 * dim)  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.grn = GRN(4 * dim)
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x.contiguous())
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.grn(x)
        x = self.pwconv2(x)
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class ConvNeXtV2(nn.Module):
    """ ConvNeXt V2

    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.

    """

    def __init__(
        self,
        in_channels=3,
        depths=[3, 3, 9, 3],
        dims=[96, 192, 384, 768],
        drop_path_rate=0.,
        strides=[(4, 4), (2, 2), (2, 2), (2, 2)],
        out_channels=256,
        last_stage=False,
        feat2d=False,
        **kwargs,
    ):
        super().__init__()
        self.strides = strides
        self.depths = depths
        self.downsample_layers = nn.ModuleList(
        )  # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_channels,
                      dims[0],
                      kernel_size=strides[0],
                      stride=strides[0]),
            LayerNorm(dims[0], eps=1e-6, data_format='channels_first'))
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                LayerNorm(dims[i], eps=1e-6, data_format='channels_first'),
                nn.Conv2d(dims[i],
                          dims[i + 1],
                          kernel_size=strides[i + 1],
                          stride=strides[i + 1]),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList(
        )  # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates = [
            x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
        ]
        cur = 0
        for i in range(4):
            stage = nn.Sequential(*[
                Block(dim=dims[i], drop_path=dp_rates[cur + j])
                for j in range(depths[i])
            ])
            self.stages.append(stage)
            cur += depths[i]
        self.out_channels = dims[-1]
        self.last_stage = last_stage
        self.feat2d = feat2d
        if last_stage:
            self.out_channels = out_channels
            self.last_conv = nn.Linear(dims[-1], self.out_channels, bias=False)
            self.hardswish = nn.Hardswish()
            self.dropout = nn.Dropout(p=0.1)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, (nn.Conv2d, nn.Linear)) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
            if m.weight is not None:
                nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.SyncBatchNorm):
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
            if m.weight is not None:
                nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.BatchNorm2d):
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
            if m.weight is not None:
                nn.init.constant_(m.weight, 1.0)

    def no_weight_decay(self):
        return {}

    def forward(self, x):
        feats = []
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
            feats.append(x)

        if self.last_stage:
            x = x.mean(2).transpose(1, 2)
            x = self.last_conv(x)
            x = self.hardswish(x)
            x = self.dropout(x)
            return x
        if self.feat2d:
            return x
        return feats