File size: 7,456 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch.nn as nn
import torch.nn.functional as F

from openrec.modeling.common import Activation


class ConvBNLayer(nn.Module):

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        groups=1,
        is_vd_mode=False,
        act=None,
    ):
        super(ConvBNLayer, self).__init__()
        self.act = act
        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = nn.AvgPool2d(kernel_size=stride,
                                        stride=stride,
                                        padding=0,
                                        ceil_mode=False)

        self._conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=1 if is_vd_mode else stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            bias=False,
        )

        self._batch_norm = nn.BatchNorm2d(out_channels, )
        if self.act is not None:
            self._act = Activation(act_type=act, inplace=True)

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        if self.act is not None:
            y = self._act(y)
        return y


class BottleneckBlock(nn.Module):

    def __init__(
        self,
        in_channels,
        out_channels,
        stride,
        shortcut=True,
        if_first=False,
        name=None,
    ):
        super(BottleneckBlock, self).__init__()
        self.scale = 4
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
            act='relu',
        )
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=stride,
            act='relu',
        )
        self.conv2 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels * self.scale,
            kernel_size=1,
            act=None,
        )

        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels * self.scale,
                kernel_size=1,
                stride=stride,
                is_vd_mode=not if_first and stride[0] != 1,
            )

        self.shortcut = shortcut
        self.out_channels = out_channels * self.scale

    def forward(self, inputs):
        y = self.conv0(inputs)

        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = short + conv2
        y = F.relu(y)
        return y


class BasicBlock(nn.Module):

    def __init__(
        self,
        in_channels,
        out_channels,
        stride,
        shortcut=True,
        if_first=False,
        name=None,
    ):
        super(BasicBlock, self).__init__()
        self.stride = stride
        self.scale = 1
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=stride,
            act='relu',
        )
        self.conv1 = ConvBNLayer(in_channels=out_channels,
                                 out_channels=out_channels,
                                 kernel_size=3,
                                 act=None)

        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=stride,
                is_vd_mode=not if_first and stride[0] != 1,
            )

        self.shortcut = shortcut
        self.out_channels = out_channels * self.scale

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = short + conv1
        y = F.relu(y)
        return y


class ResNet(nn.Module):

    def __init__(self, in_channels=3, layers=50, **kwargs):
        super(ResNet, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, 'supported layers are {} but input layer is {}'.format(
            supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]

        if layers >= 50:
            block_class = BottleneckBlock
        else:
            block_class = BasicBlock
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=32,
            kernel_size=3,
            stride=1,
            act='relu',
        )
        self.conv1_2 = ConvBNLayer(in_channels=32,
                                   out_channels=32,
                                   kernel_size=3,
                                   stride=1,
                                   act='relu')
        self.conv1_3 = ConvBNLayer(in_channels=32,
                                   out_channels=64,
                                   kernel_size=3,
                                   stride=1,
                                   act='relu')
        self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        # self.block_list = list()
        self.block_list = nn.Sequential()
        in_channels = 64
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                if layers in [101, 152, 200] and block == 2:
                    if i == 0:
                        conv_name = 'res' + str(block + 2) + 'a'
                    else:
                        conv_name = 'res' + str(block + 2) + 'b' + str(i)
                else:
                    conv_name = 'res' + str(block + 2) + chr(97 + i)

                if i == 0 and block != 0:
                    stride = (2, 1)
                else:
                    stride = (1, 1)

                block_instance = block_class(
                    in_channels=in_channels,
                    out_channels=num_filters[block],
                    stride=stride,
                    shortcut=shortcut,
                    if_first=block == i == 0,
                    name=conv_name,
                )
                shortcut = True
                in_channels = block_instance.out_channels
                # self.block_list.append(bottleneck_block)
                self.block_list.add_module('bb_%d_%d' % (block, i),
                                           block_instance)
            self.out_channels = num_filters[block]
        self.out_pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.out_pool(y)

        return y