Spaces:
Running
Running
File size: 4,712 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# Scene Text Recognition Model Hub
# Copyright 2022 Darwin Bautista
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import imgaug.augmenters as iaa
import numpy as np
from PIL import Image, ImageFilter
from openrec.preprocess import auto_augment
from openrec.preprocess.auto_augment import _LEVEL_DENOM, LEVEL_TO_ARG, NAME_TO_OP, _randomly_negate, rotate
def rotate_expand(img, degrees, **kwargs):
"""Rotate operation with expand=True to avoid cutting off the
characters."""
kwargs['expand'] = True
return rotate(img, degrees, **kwargs)
def _level_to_arg(level, hparams, key, default):
magnitude = hparams.get(key, default)
level = (level / _LEVEL_DENOM) * magnitude
level = _randomly_negate(level)
return level,
def apply():
# Overrides
NAME_TO_OP.update({'Rotate': rotate_expand})
LEVEL_TO_ARG.update({
'Rotate':
partial(_level_to_arg, key='rotate_deg', default=30.),
'ShearX':
partial(_level_to_arg, key='shear_x_pct', default=0.3),
'ShearY':
partial(_level_to_arg, key='shear_y_pct', default=0.3),
'TranslateXRel':
partial(_level_to_arg, key='translate_x_pct', default=0.45),
'TranslateYRel':
partial(_level_to_arg, key='translate_y_pct', default=0.45),
})
apply()
_OP_CACHE = {}
def _get_op(key, factory):
try:
op = _OP_CACHE[key]
except KeyError:
op = factory()
_OP_CACHE[key] = op
return op
def _get_param(level, img, max_dim_factor, min_level=1):
max_level = max(min_level, max_dim_factor * max(img.size))
return round(min(level, max_level))
def gaussian_blur(img, radius, **__):
radius = _get_param(radius, img, 0.02)
key = 'gaussian_blur_' + str(radius)
op = _get_op(key, lambda: ImageFilter.GaussianBlur(radius))
return img.filter(op)
def motion_blur(img, k, **__):
k = _get_param(k, img, 0.08, 3) | 1 # bin to odd values
key = 'motion_blur_' + str(k)
op = _get_op(key, lambda: iaa.MotionBlur(k))
return Image.fromarray(op(image=np.asarray(img)))
def gaussian_noise(img, scale, **_):
scale = _get_param(scale, img, 0.25) | 1 # bin to odd values
key = 'gaussian_noise_' + str(scale)
op = _get_op(key, lambda: iaa.AdditiveGaussianNoise(scale=scale))
return Image.fromarray(op(image=np.asarray(img)))
def poisson_noise(img, lam, **_):
lam = _get_param(lam, img, 0.2) | 1 # bin to odd values
key = 'poisson_noise_' + str(lam)
op = _get_op(key, lambda: iaa.AdditivePoissonNoise(lam))
return Image.fromarray(op(image=np.asarray(img)))
def _level_to_arg(level, _hparams, max):
level = max * level / auto_augment._LEVEL_DENOM
return level,
_RAND_TRANSFORMS = auto_augment._RAND_INCREASING_TRANSFORMS.copy()
_RAND_TRANSFORMS.remove(
'SharpnessIncreasing') # remove, interferes with *blur ops
_RAND_TRANSFORMS.extend([
'GaussianBlur',
# 'MotionBlur',
# 'GaussianNoise',
'PoissonNoise'
])
auto_augment.LEVEL_TO_ARG.update({
'GaussianBlur':
partial(_level_to_arg, max=4),
'MotionBlur':
partial(_level_to_arg, max=20),
'GaussianNoise':
partial(_level_to_arg, max=0.1 * 255),
'PoissonNoise':
partial(_level_to_arg, max=40)
})
auto_augment.NAME_TO_OP.update({
'GaussianBlur': gaussian_blur,
'MotionBlur': motion_blur,
'GaussianNoise': gaussian_noise,
'PoissonNoise': poisson_noise
})
def rand_augment_transform(magnitude=5, num_layers=3):
# These are tuned for magnitude=5, which means that effective magnitudes are half of these values.
hparams = {
'rotate_deg': 30,
'shear_x_pct': 0.9,
'shear_y_pct': 0.2,
'translate_x_pct': 0.10,
'translate_y_pct': 0.30
}
ra_ops = auto_augment.rand_augment_ops(magnitude,
hparams=hparams,
transforms=_RAND_TRANSFORMS)
# Supply weights to disable replacement in random selection (i.e. avoid applying the same op twice)
choice_weights = [1. / len(ra_ops) for _ in range(len(ra_ops))]
return auto_augment.RandAugment(ra_ops, num_layers, choice_weights)
|