Spaces:
Running
Running
File size: 17,484 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
import math
import random
import cv2
import numpy as np
import torch
from PIL import Image
from torchvision import transforms as T
from torchvision.transforms import functional as F
class CDistNetResize(object):
def __init__(self, image_shape, **kwargs):
self.image_shape = image_shape
def __call__(self, data):
img = data['image']
_, h, w = self.image_shape
# keep_aspect_ratio = False
image_pil = Image.fromarray(np.uint8(img))
image = image_pil.resize((w, h), Image.LANCZOS)
image = np.array(image)
# rgb2gray = False
image = image.transpose((2, 0, 1))
image = image.astype(np.float32) / 128.0 - 1.0
data['image'] = image
data['valid_ratio'] = 1
return data
class ABINetResize(object):
def __init__(self, image_shape, **kwargs):
self.image_shape = image_shape
def __call__(self, data):
img = data['image']
h, w = img.shape[:2]
norm_img, valid_ratio = resize_norm_img_abinet(img, self.image_shape)
data['image'] = norm_img
data['valid_ratio'] = valid_ratio
r = float(w) / float(h)
data['real_ratio'] = max(1, round(r))
return data
def resize_norm_img_abinet(img, image_shape):
imgC, imgH, imgW = image_shape
resized_image = cv2.resize(img, (imgW, imgH),
interpolation=cv2.INTER_LINEAR)
resized_w = imgW
resized_image = resized_image.astype('float32')
resized_image = resized_image / 255.0
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
resized_image = (resized_image - mean[None, None, ...]) / std[None, None,
...]
resized_image = resized_image.transpose((2, 0, 1))
resized_image = resized_image.astype('float32')
valid_ratio = min(1.0, float(resized_w / imgW))
return resized_image, valid_ratio
class SVTRResize(object):
def __init__(self, image_shape, padding=True, **kwargs):
self.image_shape = image_shape
self.padding = padding
def __call__(self, data):
img = data['image']
h, w = img.shape[:2]
norm_img, valid_ratio = resize_norm_img(img, self.image_shape,
self.padding)
data['image'] = norm_img
data['valid_ratio'] = valid_ratio
r = float(w) / float(h)
data['real_ratio'] = max(1, round(r))
return data
class RecTVResize(object):
def __init__(self, image_shape=[32, 128], padding=True, **kwargs):
self.padding = padding
self.image_shape = image_shape
self.interpolation = T.InterpolationMode.BICUBIC
transforms = []
transforms.extend([
T.ToTensor(),
T.Normalize(0.5, 0.5),
])
self.transforms = T.Compose(transforms)
def __call__(self, data):
img = data['image']
imgH, imgW = self.image_shape
w, h = img.size
if not self.padding:
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = F.resize(img, (imgH, resized_w),
interpolation=self.interpolation)
img = self.transforms(resized_image)
if resized_w < imgW:
img = F.pad(img, [0, 0, imgW - resized_w, 0], fill=0.)
valid_ratio = min(1.0, float(resized_w / imgW))
data['image'] = img
data['valid_ratio'] = valid_ratio
r = float(w) / float(h)
data['real_ratio'] = max(1, round(r))
return data
class LongResize(object):
def __init__(self,
base_shape=[[64, 64], [96, 48], [112, 40], [128, 32]],
max_ratio=12,
base_h=32,
padding_rand=False,
padding_bi=False,
padding=True,
**kwargs):
self.base_shape = base_shape
self.max_ratio = max_ratio
self.base_h = base_h
self.padding = padding
self.padding_rand = padding_rand
self.padding_bi = padding_bi
def __call__(self, data):
data = resize_norm_img_long(
data,
self.base_shape,
self.max_ratio,
self.base_h,
self.padding,
self.padding_rand,
self.padding_bi,
)
return data
class SliceResize(object):
def __init__(self, image_shape, padding=True, max_ratio=12, **kwargs):
self.image_shape = image_shape
self.padding = padding
self.max_ratio = max_ratio
def __call__(self, data):
img = data['image']
h, w = img.shape[:2]
w_bi = w // 2
img_list = [
img[:, :w_bi, :], img[:, w_bi:2 * w_bi, :],
img[:, w_bi // 2:(w_bi // 2) + w_bi, :]
]
img_reshape = []
for img_s in img_list:
norm_img, valid_ratio = resize_norm_img_slice(
img_s, self.image_shape, max_ratio=self.max_ratio)
img_reshape.append(norm_img[None, :, :, :])
data['image'] = np.concatenate(img_reshape, 0)
data['valid_ratio'] = valid_ratio
return data
class SliceTVResize(object):
def __init__(self,
image_shape,
padding=True,
base_shape=[[64, 64], [96, 48], [112, 40], [128, 32]],
max_ratio=12,
base_h=32,
**kwargs):
self.image_shape = image_shape
self.padding = padding
self.max_ratio = max_ratio
self.base_h = base_h
self.interpolation = T.InterpolationMode.BICUBIC
transforms = []
transforms.extend([
T.ToTensor(),
T.Normalize(0.5, 0.5),
])
self.transforms = T.Compose(transforms)
def __call__(self, data):
img = data['image']
w, h = img.size
w_ratio = ((w // h) // 2) * 2
w_ratio = max(6, w_ratio)
img = F.resize(img, (self.base_h, self.base_h * w_ratio),
interpolation=self.interpolation)
img = self.transforms(img)
img_list = []
for i in range(0, w_ratio // 2 - 1):
img_list.append(img[None, :, :,
i * 2 * self.base_h:(i * 2 + 4) * self.base_h])
data['image'] = torch.concat(img_list, 0)
data['valid_ratio'] = float(w_ratio) / w
return data
class RecTVResizeRatio(object):
def __init__(self,
image_shape=[32, 128],
padding=True,
base_shape=[[64, 64], [96, 48], [112, 40], [128, 32]],
max_ratio=12,
base_h=32,
**kwargs):
self.padding = padding
self.image_shape = image_shape
self.max_ratio = max_ratio
self.base_shape = base_shape
self.base_h = base_h
self.interpolation = T.InterpolationMode.BICUBIC
transforms = []
transforms.extend([
T.ToTensor(),
T.Normalize(0.5, 0.5),
])
self.transforms = T.Compose(transforms)
def __call__(self, data):
img = data['image']
imgH, imgW = self.image_shape
w, h = img.size
gen_ratio = round(float(w) / float(h))
ratio_resize = 1 if gen_ratio == 0 else gen_ratio
ratio_resize = min(ratio_resize, self.max_ratio)
imgW, imgH = self.base_shape[ratio_resize -
1] if ratio_resize <= 4 else [
self.base_h *
ratio_resize, self.base_h
]
if not self.padding:
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = F.resize(img, (imgH, resized_w),
interpolation=self.interpolation)
img = self.transforms(resized_image)
if resized_w < imgW:
img = F.pad(img, [0, 0, imgW - resized_w, 0], fill=0.)
valid_ratio = min(1.0, float(resized_w / imgW))
data['image'] = img
data['valid_ratio'] = valid_ratio
return data
class RecDynamicResize(object):
def __init__(self, image_shape=[32, 128], padding=True, **kwargs):
self.padding = padding
self.image_shape = image_shape
self.max_ratio = image_shape[1] * 1.0 / image_shape[0]
def __call__(self, data):
img = data['image']
imgH, imgW = self.image_shape
h, w, imgC = img.shape
ratio = w / float(h)
max_wh_ratio = max(ratio, self.max_ratio)
imgW = int(imgH * max_wh_ratio)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
data['image'] = padding_im
return data
def resize_norm_img_slice(
img,
image_shape,
base_shape=[[64, 64], [96, 48], [112, 40], [128, 32]],
max_ratio=12,
base_h=32,
padding=True,
):
imgC, imgH, imgW = image_shape
h = img.shape[0]
w = img.shape[1]
gen_ratio = round(float(w) / float(h))
ratio_resize = 1 if gen_ratio == 0 else gen_ratio
ratio_resize = min(ratio_resize, max_ratio)
imgW, imgH = base_shape[ratio_resize - 1] if ratio_resize <= 4 else [
base_h * ratio_resize, base_h
]
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
if not padding:
resized_image = cv2.resize(img, (imgW, imgH))
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio * (random.random() + 0.5)))
resized_w = min(imgW, resized_w)
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, :resized_w] = resized_image
valid_ratio = min(1.0, float(resized_w / imgW))
return padding_im, valid_ratio
def resize_norm_img(img,
image_shape,
padding=True,
interpolation=cv2.INTER_LINEAR):
imgC, imgH, imgW = image_shape
h = img.shape[0]
w = img.shape[1]
if not padding:
resized_image = cv2.resize(img, (imgW, imgH),
interpolation=interpolation)
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
valid_ratio = min(1.0, float(resized_w / imgW))
return padding_im, valid_ratio
def resize_norm_img_long(
data,
base_shape=[[64, 64], [96, 48], [112, 40], [128, 32]],
max_ratio=12,
base_h=32,
padding=True,
padding_rand=False,
padding_bi=False,
):
img = data['image']
h = img.shape[0]
w = img.shape[1]
gen_ratio = data.get('gen_ratio', 0)
if gen_ratio == 0:
ratio = w / float(h)
gen_ratio = round(ratio) if ratio > 0.5 else 1
gen_ratio = min(data['gen_ratio'], max_ratio)
if padding_rand and random.random() < 0.5:
padding = False if padding else True
imgW, imgH = base_shape[gen_ratio -
1] if gen_ratio <= len(base_shape) else [
base_h * gen_ratio, base_h
]
if not padding:
resized_image = cv2.resize(img, (imgW, imgH),
interpolation=cv2.INTER_LINEAR)
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio * (random.random() + 0.5)))
resized_w = min(imgW, resized_w)
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((3, imgH, imgW), dtype=np.float32)
if padding_bi and random.random() < 0.5:
padding_im[:, :, -resized_w:] = resized_image
else:
padding_im[:, :, :resized_w] = resized_image
valid_ratio = min(1.0, float(resized_w / imgW))
data['image'] = padding_im
data['valid_ratio'] = valid_ratio
data['gen_ratio'] = imgW // imgH
data['real_ratio'] = w // h
return data
class VisionLANResize(object):
def __init__(self, image_shape, **kwargs):
self.image_shape = image_shape
def __call__(self, data):
img = data['image']
imgC, imgH, imgW = self.image_shape
resized_image = cv2.resize(img, (imgW, imgH))
resized_image = resized_image.astype('float32')
if imgC == 1:
resized_image = resized_image / 255
norm_img = resized_image[np.newaxis, :]
else:
norm_img = resized_image.transpose((2, 0, 1)) / 255
data['image'] = norm_img
data['valid_ratio'] = 1.0
return data
class RobustScannerRecResizeImg(object):
def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
self.image_shape = image_shape
self.width_downsample_ratio = width_downsample_ratio
def __call__(self, data):
img = data['image']
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
img, self.image_shape, self.width_downsample_ratio)
data['image'] = norm_img
data['resized_shape'] = resize_shape
data['pad_shape'] = pad_shape
data['valid_ratio'] = valid_ratio
return data
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
imgC, imgH, imgW_min, imgW_max = image_shape
h = img.shape[0]
w = img.shape[1]
valid_ratio = 1.0
# make sure new_width is an integral multiple of width_divisor.
width_divisor = int(1 / width_downsample_ratio)
# resize
ratio = w / float(h)
resize_w = math.ceil(imgH * ratio)
if resize_w % width_divisor != 0:
resize_w = round(resize_w / width_divisor) * width_divisor
if imgW_min is not None:
resize_w = max(imgW_min, resize_w)
if imgW_max is not None:
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
resize_w = min(imgW_max, resize_w)
resized_image = cv2.resize(img, (resize_w, imgH))
resized_image = resized_image.astype('float32')
# norm
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
resize_shape = resized_image.shape
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
padding_im[:, :, 0:resize_w] = resized_image
pad_shape = padding_im.shape
return padding_im, resize_shape, pad_shape, valid_ratio
class SRNRecResizeImg(object):
def __init__(self, image_shape, **kwargs):
self.image_shape = image_shape
def __call__(self, data):
img = data['image']
norm_img = resize_norm_img_srn(img, self.image_shape)
data['image'] = norm_img
return data
def resize_norm_img_srn(img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0:img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
|