File size: 7,892 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import math
import os
import random

import numpy as np
import torch
from torch.utils.data import Sampler


class RatioSampler(Sampler):

    def __init__(self,
                 data_source,
                 scales,
                 first_bs=512,
                 fix_bs=True,
                 divided_factor=[8, 16],
                 is_training=True,
                 max_ratio=10,
                 max_bs=1024,
                 seed=None):
        """
            multi scale samper
            Args:
                data_source(dataset)
                scales(list): several scales for image resolution
                first_bs(int): batch size for the first scale in scales
                divided_factor(list[w, h]): ImageNet models down-sample images by a factor, ensure that width and height dimensions are multiples are multiple of devided_factor.
                is_training(boolean): mode
        """
        # min. and max. spatial dimensions
        self.data_source = data_source
        # self.data_idx_order_list = np.array(data_source.data_idx_order_list)
        self.ds_width = data_source.ds_width
        self.seed = data_source.seed
        if self.ds_width:
            self.wh_ratio = data_source.wh_ratio
            self.wh_ratio_sort = data_source.wh_ratio_sort
        self.n_data_samples = len(self.data_source)
        self.max_ratio = max_ratio
        self.max_bs = max_bs

        if isinstance(scales[0], list):
            width_dims = [i[0] for i in scales]
            height_dims = [i[1] for i in scales]
        elif isinstance(scales[0], int):
            width_dims = scales
            height_dims = scales
        base_im_w = width_dims[0]
        base_im_h = height_dims[0]
        base_batch_size = first_bs
        base_elements = base_im_w * base_im_h * base_batch_size
        self.base_elements = base_elements
        self.base_batch_size = base_batch_size
        self.base_im_h = base_im_h
        self.base_im_w = base_im_w

        # Get the GPU and node related information
        num_replicas = torch.cuda.device_count()
        # rank = dist.get_rank()
        rank = (int(os.environ['LOCAL_RANK'])
                if 'LOCAL_RANK' in os.environ else 0)
        # self.rank = rank
        # adjust the total samples to avoid batch dropping
        num_samples_per_replica = int(
            math.ceil(self.n_data_samples * 1.0 / num_replicas))

        img_indices = [idx for idx in range(self.n_data_samples)]
        self.shuffle = False
        if is_training:
            # compute the spatial dimensions and corresponding batch size
            # ImageNet models down-sample images by a factor of 32.
            # Ensure that width and height dimensions are multiples are multiple of 32.
            width_dims = [
                int((w // divided_factor[0]) * divided_factor[0])
                for w in width_dims
            ]
            height_dims = [
                int((h // divided_factor[1]) * divided_factor[1])
                for h in height_dims
            ]

            img_batch_pairs = list()
            for (h, w) in zip(height_dims, width_dims):
                if fix_bs:
                    batch_size = base_batch_size
                else:
                    batch_size = int(max(1, (base_elements / (h * w))))
                img_batch_pairs.append((w, h, batch_size))
            self.img_batch_pairs = img_batch_pairs
            self.shuffle = True
            np.random.seed(seed)
            random.seed(seed)
        else:
            self.img_batch_pairs = [(base_im_w, base_im_h, base_batch_size)]

        self.img_indices = img_indices
        self.n_samples_per_replica = num_samples_per_replica
        self.epoch = 0
        self.rank = rank
        self.num_replicas = num_replicas

        # self.batch_list = []
        self.current = 0
        self.is_training = is_training
        if is_training:
            indices_rank_i = self.img_indices[
                self.rank:len(self.img_indices):self.num_replicas]
        else:
            indices_rank_i = self.img_indices
        self.indices_rank_i_ori = np.array(self.wh_ratio_sort[indices_rank_i])
        self.indices_rank_i_ratio = self.wh_ratio[self.indices_rank_i_ori]
        indices_rank_i_ratio_unique = np.unique(self.indices_rank_i_ratio)
        self.indices_rank_i_ratio_unique = indices_rank_i_ratio_unique.tolist()
        self.batch_list = self.create_batch()
        self.length = len(self.batch_list)
        self.batchs_in_one_epoch_id = [i for i in range(self.length)]

    def create_batch(self):
        batch_list = []
        for ratio in self.indices_rank_i_ratio_unique:
            ratio_ids = np.where(self.indices_rank_i_ratio == ratio)[0]
            ratio_ids = self.indices_rank_i_ori[ratio_ids]
            if self.shuffle:
                random.shuffle(ratio_ids)
            num_ratio = ratio_ids.shape[0]
            if ratio < 5:
                batch_size_ratio = self.base_batch_size
            else:
                batch_size_ratio = min(
                    self.max_bs,
                    int(
                        max(1, (self.base_elements /
                                (self.base_im_h * ratio * self.base_im_h)))))
            if num_ratio > batch_size_ratio:
                batch_num_ratio = num_ratio // batch_size_ratio
                print(self.rank, num_ratio, ratio * self.base_im_h,
                      batch_num_ratio, batch_size_ratio)
                ratio_ids_full = ratio_ids[:batch_num_ratio *
                                           batch_size_ratio].reshape(
                                               batch_num_ratio,
                                               batch_size_ratio, 1)
                w = np.full_like(ratio_ids_full, ratio * self.base_im_h)
                h = np.full_like(ratio_ids_full, self.base_im_h)
                ra_wh = np.full_like(ratio_ids_full, ratio)
                ratio_ids_full = np.concatenate([w, h, ratio_ids_full, ra_wh],
                                                axis=-1)
                batch_ratio = ratio_ids_full.tolist()

                if batch_num_ratio * batch_size_ratio < num_ratio:
                    drop = ratio_ids[batch_num_ratio * batch_size_ratio:]
                    if self.is_training:
                        drop_full = ratio_ids[:batch_size_ratio - (
                            num_ratio - batch_num_ratio * batch_size_ratio)]
                        drop = np.append(drop_full, drop)
                    drop = drop.reshape(-1, 1)
                    w = np.full_like(drop, ratio * self.base_im_h)
                    h = np.full_like(drop, self.base_im_h)
                    ra_wh = np.full_like(drop, ratio)

                    drop = np.concatenate([w, h, drop, ra_wh], axis=-1)

                    batch_ratio.append(drop.tolist())
                    batch_list += batch_ratio
            else:
                print(self.rank, num_ratio, ratio * self.base_im_h,
                      batch_size_ratio)
                ratio_ids = ratio_ids.reshape(-1, 1)
                w = np.full_like(ratio_ids, ratio * self.base_im_h)
                h = np.full_like(ratio_ids, self.base_im_h)
                ra_wh = np.full_like(ratio_ids, ratio)

                ratio_ids = np.concatenate([w, h, ratio_ids, ra_wh], axis=-1)
                batch_list.append(ratio_ids.tolist())
        return batch_list

    def __iter__(self):
        if self.shuffle or self.is_training:
            random.seed(self.epoch)
            self.epoch += 1
            self.batch_list = self.create_batch()
            random.shuffle(self.batchs_in_one_epoch_id)
        for batch_tuple_id in self.batchs_in_one_epoch_id:
            yield self.batch_list[batch_tuple_id]

    def set_epoch(self, epoch: int):
        self.epoch = epoch

    def __len__(self):
        return self.length