Spaces:
Running
Running
File size: 18,644 Bytes
29f689c 4842f28 29f689c 695a4a4 29f689c 695a4a4 29f689c 695a4a4 29f689c 695a4a4 29f689c 695a4a4 29f689c 695a4a4 29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from pathlib import Path
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
import argparse
import numpy as np
import copy
import time
import cv2
import json
from PIL import Image
from tools.utils.utility import get_image_file_list, check_and_read
from tools.infer_rec import OpenRecognizer
from tools.infer_det import OpenDetector
from tools.engine import Config
from tools.infer.utility import get_rotate_crop_image, get_minarea_rect_crop, draw_ocr_box_txt
from tools.utils.logging import get_logger
root_dir = Path(__file__).resolve().parent
DEFAULT_CFG_PATH_DET = str(root_dir / '../configs/det/dbnet/repvit_db.yml')
DEFAULT_CFG_PATH_REC_SERVER = str(root_dir /
'../configs/rec/svtrv2/svtrv2_ch.yml')
DEFAULT_CFG_PATH_REC = str(root_dir / '../configs/rec/svtrv2/repsvtr_ch.yml')
logger = get_logger()
MODEL_NAME_DET = './openocr_det_repvit_ch.pth' # 模型文件名称
DOWNLOAD_URL_DET = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_det_repvit_ch.pth' # 模型文件 URL
MODEL_NAME_REC = './openocr_repsvtr_ch.pth' # 模型文件名称
DOWNLOAD_URL_REC = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_repsvtr_ch.pth' # 模型文件 URL
MODEL_NAME_REC_SERVER = './openocr_svtrv2_ch.pth' # 模型文件名称
DOWNLOAD_URL_REC_SERVER = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_svtrv2_ch.pth' # 模型文件 URL
def check_and_download_model(model_name: str, url: str):
"""
检查预训练模型是否存在,若不存在则从指定 URL 下载到固定缓存目录。
Args:
model_name (str): 模型文件的名称,例如 "model.pt"
url (str): 模型文件的下载地址
Returns:
str: 模型文件的完整路径
"""
if os.path.exists(model_name):
return model_name
# 固定缓存路径为用户主目录下的 ".cache/openocr"
cache_dir = Path.home() / '.cache' / 'openocr'
model_path = cache_dir / model_name
# 如果模型文件已存在,直接返回路径
if model_path.exists():
logger.info(f'Model already exists at: {model_path}')
return str(model_path)
# 如果文件不存在,下载模型
logger.info(f'Model not found. Downloading from {url}...')
# 创建缓存目录(如果不存在)
cache_dir.mkdir(parents=True, exist_ok=True)
try:
# 下载文件
import urllib.request
with urllib.request.urlopen(url) as response, open(model_path,
'wb') as out_file:
out_file.write(response.read())
logger.info(f'Model downloaded and saved at: {model_path}')
return str(model_path)
except Exception as e:
logger.error(f'Error downloading the model: {e}')
# 提示用户手动下载
logger.error(
f'Unable to download the model automatically. '
f'Please download the model manually from the following URL:\n{url}\n'
f'and save it to: {model_name} or {model_path}')
raise RuntimeError(
f'Failed to download the model. Please download it manually from {url} '
f'and save it to {model_path}') from e
def check_and_download_font(font_path):
if not os.path.exists(font_path):
cache_dir = Path.home() / '.cache' / 'openocr'
font_path = str(cache_dir / font_path)
if os.path.exists(font_path):
return font_path
logger.info(f"Downloading '{font_path}' ...")
try:
import urllib.request
font_url = 'https://shuiche-shop.oss-cn-chengdu.aliyuncs.com/fonts/simfang.ttf'
urllib.request.urlretrieve(font_url, font_path)
logger.info(f'Downloading font success: {font_path}')
except Exception as e:
logger.info(f'Downloading font error: {e}')
return font_path
def sorted_boxes(dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
for j in range(i, -1, -1):
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and (
_boxes[j + 1][0][0] < _boxes[j][0][0]):
tmp = _boxes[j]
_boxes[j] = _boxes[j + 1]
_boxes[j + 1] = tmp
else:
break
return _boxes
class OpenOCR(object):
def __init__(self, mode='mobile', drop_score=0.5, det_box_type='quad'):
"""
初始化函数,用于初始化OCR引擎的相关配置和组件。
Args:
mode (str, optional): 运行模式,可选值为'mobile'或'server'。默认为'mobile'。
drop_score (float, optional): 检测框的置信度阈值,低于该阈值的检测框将被丢弃。默认为0.5。
det_box_type (str, optional): 检测框的类型,可选值为'quad' and 'poly'。默认为'quad'。
Returns:
无返回值。
"""
cfg_det = Config(DEFAULT_CFG_PATH_DET).cfg # mobile model
model_dir = check_and_download_model(MODEL_NAME_DET, DOWNLOAD_URL_DET)
cfg_det['Global']['pretrained_model'] = model_dir
if mode == 'server':
cfg_rec = Config(DEFAULT_CFG_PATH_REC_SERVER).cfg # server model
model_dir = check_and_download_model(MODEL_NAME_REC_SERVER,
DOWNLOAD_URL_REC_SERVER)
else:
cfg_rec = Config(DEFAULT_CFG_PATH_REC).cfg # mobile model
model_dir = check_and_download_model(MODEL_NAME_REC,
DOWNLOAD_URL_REC)
cfg_rec['Global']['pretrained_model'] = model_dir
self.text_detector = OpenDetector(cfg_det)
self.text_recognizer = OpenRecognizer(cfg_rec)
self.det_box_type = det_box_type
self.drop_score = drop_score
self.crop_image_res_index = 0
def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
os.makedirs(output_dir, exist_ok=True)
bbox_num = len(img_crop_list)
for bno in range(bbox_num):
cv2.imwrite(
os.path.join(output_dir,
f'mg_crop_{bno+self.crop_image_res_index}.jpg'),
img_crop_list[bno],
)
self.crop_image_res_index += bbox_num
def infer_single_image(self,
img_numpy,
ori_img,
crop_infer=False,
rec_batch_num=6,
return_mask=False,
**kwargs):
start = time.time()
if crop_infer:
dt_boxes = self.text_detector.crop_infer(
img_numpy=img_numpy)[0]['boxes']
else:
det_res = self.text_detector(img_numpy=img_numpy,
return_mask=return_mask, **kwargs)[0]
dt_boxes = det_res['boxes']
# logger.info(dt_boxes)
det_time_cost = time.time() - start
if dt_boxes is None:
return None, None, None
img_crop_list = []
dt_boxes = sorted_boxes(dt_boxes)
for bno in range(len(dt_boxes)):
tmp_box = np.array(copy.deepcopy(dt_boxes[bno])).astype(np.float32)
if self.det_box_type == 'quad':
img_crop = get_rotate_crop_image(ori_img, tmp_box)
else:
img_crop = get_minarea_rect_crop(ori_img, tmp_box)
img_crop_list.append(img_crop)
start = time.time()
rec_res = self.text_recognizer(img_numpy_list=img_crop_list,
batch_num=rec_batch_num)
rec_time_cost = time.time() - start
filter_boxes, filter_rec_res = [], []
rec_time_cost_sig = 0.0
for box, rec_result in zip(dt_boxes, rec_res):
text, score = rec_result['text'], rec_result['score']
rec_time_cost_sig += rec_result['elapse']
if score >= self.drop_score:
filter_boxes.append(box)
filter_rec_res.append([text, score])
avg_rec_time_cost = rec_time_cost_sig / len(dt_boxes) if len(
dt_boxes) > 0 else 0.0
if return_mask:
return filter_boxes, filter_rec_res, {
'time_cost': det_time_cost + rec_time_cost,
'detection_time': det_time_cost,
'recognition_time': rec_time_cost,
'avg_rec_time_cost': avg_rec_time_cost
}, det_res['mask']
return filter_boxes, filter_rec_res, {
'time_cost': det_time_cost + rec_time_cost,
'detection_time': det_time_cost,
'recognition_time': rec_time_cost,
'avg_rec_time_cost': avg_rec_time_cost
}
def __call__(self,
img_path=None,
save_dir='e2e_results/',
is_visualize=False,
img_numpy=None,
rec_batch_num=6,
crop_infer=False,
return_mask=False,
**kwargs):
"""
img_path: str, optional, default=None
Path to the directory containing images or the image filename.
save_dir: str, optional, default='e2e_results/'
Directory to save prediction and visualization results. Defaults to a subfolder in img_path.
is_visualize: bool, optional, default=False
Visualize the results.
img_numpy: numpy or list[numpy], optional, default=None
numpy of an image or List of numpy arrays representing images.
rec_batch_num: int, optional, default=6
Batch size for text recognition.
crop_infer: bool, optional, default=False
Whether to use crop inference.
"""
if img_numpy is None and img_path is None:
raise ValueError('img_path and img_numpy cannot be both None.')
if img_numpy is not None:
if not isinstance(img_numpy, list):
img_numpy = [img_numpy]
results = []
time_dicts = []
for index, img in enumerate(img_numpy):
ori_img = img.copy()
if return_mask:
dt_boxes, rec_res, time_dict, mask = self.infer_single_image(
img_numpy=img,
ori_img=ori_img,
crop_infer=crop_infer,
rec_batch_num=rec_batch_num,
return_mask=return_mask,
**kwargs)
else:
dt_boxes, rec_res, time_dict = self.infer_single_image(
img_numpy=img,
ori_img=ori_img,
crop_infer=crop_infer,
rec_batch_num=rec_batch_num,
**kwargs)
if dt_boxes is None:
results.append([])
time_dicts.append({})
continue
res = [{
'transcription': rec_res[i][0],
'points': np.array(dt_boxes[i]).tolist(),
'score': rec_res[i][1],
} for i in range(len(dt_boxes))]
results.append(res)
time_dicts.append(time_dict)
if return_mask:
return results, time_dicts, mask
return results, time_dicts
image_file_list = get_image_file_list(img_path)
save_results = []
time_dicts_return = []
for idx, image_file in enumerate(image_file_list):
img, flag_gif, flag_pdf = check_and_read(image_file)
if not flag_gif and not flag_pdf:
img = cv2.imread(image_file)
if not flag_pdf:
if img is None:
return None
imgs = [img]
else:
imgs = img
logger.info(
f'Processing {idx+1}/{len(image_file_list)}: {image_file}')
res_list = []
time_dicts = []
for index, img_numpy in enumerate(imgs):
ori_img = img_numpy.copy()
dt_boxes, rec_res, time_dict = self.infer_single_image(
img_numpy=img_numpy,
ori_img=ori_img,
crop_infer=crop_infer,
rec_batch_num=rec_batch_num,
**kwargs)
if dt_boxes is None:
res_list.append([])
time_dicts.append({})
continue
res = [{
'transcription': rec_res[i][0],
'points': np.array(dt_boxes[i]).tolist(),
'score': rec_res[i][1],
} for i in range(len(dt_boxes))]
res_list.append(res)
time_dicts.append(time_dict)
for index, (res, time_dict) in enumerate(zip(res_list,
time_dicts)):
if len(res) > 0:
logger.info(f'Results: {res}.')
logger.info(f'Time cost: {time_dict}.')
else:
logger.info('No text detected.')
if len(res_list) > 1:
save_pred = (os.path.basename(image_file) + '_' +
str(index) + '\t' +
json.dumps(res, ensure_ascii=False) + '\n')
else:
if len(res) > 0:
save_pred = (os.path.basename(image_file) + '\t' +
json.dumps(res, ensure_ascii=False) +
'\n')
else:
continue
save_results.append(save_pred)
time_dicts_return.append(time_dict)
if is_visualize and len(res) > 0:
if idx == 0:
font_path = './simfang.ttf'
font_path = check_and_download_font(font_path)
os.makedirs(save_dir, exist_ok=True)
draw_img_save_dir = os.path.join(
save_dir, 'vis_results/')
os.makedirs(draw_img_save_dir, exist_ok=True)
logger.info(
f'Visualized results will be saved to {draw_img_save_dir}.'
)
dt_boxes = [res[i]['points'] for i in range(len(res))]
rec_res = [
res[i]['transcription'] for i in range(len(res))
]
rec_score = [res[i]['score'] for i in range(len(res))]
image = Image.fromarray(
cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
boxes = dt_boxes
txts = [rec_res[i] for i in range(len(rec_res))]
scores = [rec_score[i] for i in range(len(rec_res))]
draw_img = draw_ocr_box_txt(
image,
boxes,
txts,
scores,
drop_score=self.drop_score,
font_path=font_path,
)
if flag_gif:
save_file = image_file[:-3] + 'png'
elif flag_pdf:
save_file = image_file.replace(
'.pdf', '_' + str(index) + '.png')
else:
save_file = image_file
cv2.imwrite(
os.path.join(draw_img_save_dir,
os.path.basename(save_file)),
draw_img[:, :, ::-1],
)
if save_results:
os.makedirs(save_dir, exist_ok=True)
with open(os.path.join(save_dir, 'system_results.txt'),
'w',
encoding='utf-8') as f:
f.writelines(save_results)
logger.info(
f"Results saved to {os.path.join(save_dir, 'system_results.txt')}."
)
if is_visualize:
logger.info(
f'Visualized results saved to {draw_img_save_dir}.')
return save_results, time_dicts_return
else:
logger.info('No text detected.')
return None, None
def main():
parser = argparse.ArgumentParser(description='OpenOCR system')
parser.add_argument(
'--img_path',
type=str,
help='Path to the directory containing images or the image filename.')
parser.add_argument(
'--mode',
type=str,
default='mobile',
help="Mode of the OCR system, e.g., 'mobile' or 'server'.")
parser.add_argument(
'--save_dir',
type=str,
default='e2e_results/',
help='Directory to save prediction and visualization results. \
Defaults to ./e2e_results/.')
parser.add_argument('--is_vis',
action='store_true',
default=False,
help='Visualize the results.')
parser.add_argument('--drop_score',
type=float,
default=0.5,
help='Score threshold for text recognition.')
args = parser.parse_args()
img_path = args.img_path
mode = args.mode
save_dir = args.save_dir
is_visualize = args.is_vis
drop_score = args.drop_score
text_sys = OpenOCR(mode=mode, drop_score=drop_score,
det_box_type='quad') # det_box_type: 'quad' or 'poly'
text_sys(img_path=img_path, save_dir=save_dir, is_visualize=is_visualize)
if __name__ == '__main__':
main()
|