File size: 5,845 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, ".."))
from extract_textpoint_slow import *
from extract_textpoint_fast import generate_pivot_list_fast, restore_poly


class PGNet_PostProcess(object):
    # two different post-process
    def __init__(
            self,
            character_dict_path,
            valid_set,
            score_thresh,
            outs_dict,
            shape_list,
            point_gather_mode=None, ):
        self.Lexicon_Table = get_dict(character_dict_path)
        self.valid_set = valid_set
        self.score_thresh = score_thresh
        self.outs_dict = outs_dict
        self.shape_list = shape_list
        self.point_gather_mode = point_gather_mode

    def pg_postprocess_fast(self):
        p_score = self.outs_dict["f_score"]
        p_border = self.outs_dict["f_border"]
        p_char = self.outs_dict["f_char"]
        p_direction = self.outs_dict["f_direction"]
        if isinstance(p_score, torch.Tensor):
            p_score = p_score[0].numpy()
            p_border = p_border[0].numpy()
            p_direction = p_direction[0].numpy()
            p_char = p_char[0].numpy()
        else:
            p_score = p_score[0]
            p_border = p_border[0]
            p_direction = p_direction[0]
            p_char = p_char[0]

        src_h, src_w, ratio_h, ratio_w = self.shape_list[0]
        instance_yxs_list, seq_strs = generate_pivot_list_fast(
            p_score,
            p_char,
            p_direction,
            self.Lexicon_Table,
            score_thresh=self.score_thresh,
            point_gather_mode=self.point_gather_mode, )
        poly_list, keep_str_list = restore_poly(
            instance_yxs_list,
            seq_strs,
            p_border,
            ratio_w,
            ratio_h,
            src_w,
            src_h,
            self.valid_set, )
        data = {
            "points": poly_list,
            "texts": keep_str_list,
        }
        return data

    def pg_postprocess_slow(self):
        p_score = self.outs_dict["f_score"]
        p_border = self.outs_dict["f_border"]
        p_char = self.outs_dict["f_char"]
        p_direction = self.outs_dict["f_direction"]
        if isinstance(p_score, torch.Tensor):
            p_score = p_score[0].numpy()
            p_border = p_border[0].numpy()
            p_direction = p_direction[0].numpy()
            p_char = p_char[0].numpy()
        else:
            p_score = p_score[0]
            p_border = p_border[0]
            p_direction = p_direction[0]
            p_char = p_char[0]
        src_h, src_w, ratio_h, ratio_w = self.shape_list[0]
        is_curved = self.valid_set == "totaltext"
        char_seq_idx_set, instance_yxs_list = generate_pivot_list_slow(
            p_score,
            p_char,
            p_direction,
            score_thresh=self.score_thresh,
            is_backbone=True,
            is_curved=is_curved, )
        seq_strs = []
        for char_idx_set in char_seq_idx_set:
            pr_str = "".join([self.Lexicon_Table[pos] for pos in char_idx_set])
            seq_strs.append(pr_str)
        poly_list = []
        keep_str_list = []
        all_point_list = []
        all_point_pair_list = []
        for yx_center_line, keep_str in zip(instance_yxs_list, seq_strs):
            if len(yx_center_line) == 1:
                yx_center_line.append(yx_center_line[-1])

            offset_expand = 1.0
            if self.valid_set == "totaltext":
                offset_expand = 1.2

            point_pair_list = []
            for batch_id, y, x in yx_center_line:
                offset = p_border[:, y, x].reshape(2, 2)
                if offset_expand != 1.0:
                    offset_length = np.linalg.norm(
                        offset, axis=1, keepdims=True)
                    expand_length = np.clip(
                        offset_length * (offset_expand - 1),
                        a_min=0.5,
                        a_max=3.0)
                    offset_detal = offset / offset_length * expand_length
                    offset = offset + offset_detal
                ori_yx = np.array([y, x], dtype=np.float32)
                point_pair = ((ori_yx + offset)[:, ::-1] * 4.0 /
                              np.array([ratio_w, ratio_h]).reshape(-1, 2))
                point_pair_list.append(point_pair)

                all_point_list.append([
                    int(round(x * 4.0 / ratio_w)),
                    int(round(y * 4.0 / ratio_h))
                ])
                all_point_pair_list.append(point_pair.round().astype(np.int32)
                                           .tolist())

            detected_poly, pair_length_info = point_pair2poly(point_pair_list)
            detected_poly = expand_poly_along_width(
                detected_poly, shrink_ratio_of_width=0.2)
            detected_poly[:, 0] = np.clip(
                detected_poly[:, 0], a_min=0, a_max=src_w)
            detected_poly[:, 1] = np.clip(
                detected_poly[:, 1], a_min=0, a_max=src_h)

            if len(keep_str) < 2:
                continue

            keep_str_list.append(keep_str)
            detected_poly = np.round(detected_poly).astype("int32")
            if self.valid_set == "partvgg":
                middle_point = len(detected_poly) // 2
                detected_poly = detected_poly[
                    [0, middle_point - 1, middle_point, -1], :]
                poly_list.append(detected_poly)
            elif self.valid_set == "totaltext":
                poly_list.append(detected_poly)
            else:
                print("--> Not supported format.")
                exit(-1)
        data = {
            "points": poly_list,
            "texts": keep_str_list,
        }
        return data