Spaces:
Running
Running
import json | |
import math | |
import os | |
import random | |
import traceback | |
import cv2 | |
import numpy as np | |
from torch.utils.data import Dataset | |
from openrec.preprocess import create_operators, transform | |
class SimpleDataSet(Dataset): | |
def __init__(self, config, mode, logger, seed=None, epoch=0): | |
super(SimpleDataSet, self).__init__() | |
self.logger = logger | |
self.mode = mode.lower() | |
global_config = config['Global'] | |
dataset_config = config[mode]['dataset'] | |
loader_config = config[mode]['loader'] | |
self.delimiter = dataset_config.get('delimiter', '\t') | |
label_file_list = dataset_config.pop('label_file_list') | |
data_source_num = len(label_file_list) | |
ratio_list = dataset_config.get('ratio_list', 1.0) | |
if isinstance(ratio_list, (float, int)): | |
ratio_list = [float(ratio_list)] * int(data_source_num) | |
assert len( | |
ratio_list | |
) == data_source_num, 'The length of ratio_list should be the same as the file_list.' | |
self.data_dir = dataset_config['data_dir'] | |
self.do_shuffle = loader_config['shuffle'] | |
self.seed = seed | |
logger.info(f'Initialize indexs of datasets: {label_file_list}') | |
self.data_lines = self.get_image_info_list(label_file_list, ratio_list) | |
self.data_idx_order_list = list(range(len(self.data_lines))) | |
if self.mode == 'train' and self.do_shuffle: | |
self.shuffle_data_random() | |
self.set_epoch_as_seed(self.seed, dataset_config) | |
self.ops = create_operators(dataset_config['transforms'], | |
global_config) | |
self.ext_op_transform_idx = dataset_config.get('ext_op_transform_idx', | |
2) | |
self.need_reset = True in [x < 1 for x in ratio_list] | |
def set_epoch_as_seed(self, seed, dataset_config): | |
if self.mode == 'train': | |
try: | |
border_map_id = [ | |
index for index, dictionary in enumerate( | |
dataset_config['transforms']) | |
if 'MakeBorderMap' in dictionary | |
][0] | |
shrink_map_id = [ | |
index for index, dictionary in enumerate( | |
dataset_config['transforms']) | |
if 'MakeShrinkMap' in dictionary | |
][0] | |
dataset_config['transforms'][border_map_id]['MakeBorderMap'][ | |
'epoch'] = seed if seed is not None else 0 | |
dataset_config['transforms'][shrink_map_id]['MakeShrinkMap'][ | |
'epoch'] = seed if seed is not None else 0 | |
except Exception: | |
return | |
def get_image_info_list(self, file_list, ratio_list): | |
if isinstance(file_list, str): | |
file_list = [file_list] | |
data_lines = [] | |
for idx, file in enumerate(file_list): | |
with open(file, 'rb') as f: | |
lines = f.readlines() | |
if self.mode == 'train' or ratio_list[idx] < 1.0: | |
random.seed(self.seed) | |
lines = random.sample(lines, | |
round(len(lines) * ratio_list[idx])) | |
data_lines.extend(lines) | |
return data_lines | |
def shuffle_data_random(self): | |
random.seed(self.seed) | |
random.shuffle(self.data_lines) | |
return | |
def _try_parse_filename_list(self, file_name): | |
# multiple images -> one gt label | |
if len(file_name) > 0 and file_name[0] == '[': | |
try: | |
info = json.loads(file_name) | |
file_name = random.choice(info) | |
except: | |
pass | |
return file_name | |
def get_ext_data(self): | |
ext_data_num = 0 | |
for op in self.ops: | |
if hasattr(op, 'ext_data_num'): | |
ext_data_num = getattr(op, 'ext_data_num') | |
break | |
load_data_ops = self.ops[:self.ext_op_transform_idx] | |
ext_data = [] | |
while len(ext_data) < ext_data_num: | |
file_idx = self.data_idx_order_list[np.random.randint( | |
self.__len__())] | |
data_line = self.data_lines[file_idx] | |
data_line = data_line.decode('utf-8') | |
substr = data_line.strip('\n').split(self.delimiter) | |
file_name = substr[0] | |
file_name = self._try_parse_filename_list(file_name) | |
label = substr[1] | |
img_path = os.path.join(self.data_dir, file_name) | |
data = {'img_path': img_path, 'label': label} | |
if not os.path.exists(img_path): | |
continue | |
with open(data['img_path'], 'rb') as f: | |
img = f.read() | |
data['image'] = img | |
data = transform(data, load_data_ops) | |
if data is None: | |
continue | |
if 'polys' in data.keys(): | |
if data['polys'].shape[1] != 4: | |
continue | |
ext_data.append(data) | |
return ext_data | |
def __getitem__(self, idx): | |
file_idx = self.data_idx_order_list[idx] | |
data_line = self.data_lines[file_idx] | |
try: | |
data_line = data_line.decode('utf-8') | |
substr = data_line.strip('\n').split(self.delimiter) | |
file_name = substr[0] | |
file_name = self._try_parse_filename_list(file_name) | |
label = substr[1] | |
img_path = os.path.join(self.data_dir, file_name) | |
data = {'img_path': img_path, 'label': label} | |
if not os.path.exists(img_path): | |
raise Exception('{} does not exist!'.format(img_path)) | |
with open(data['img_path'], 'rb') as f: | |
img = f.read() | |
data['image'] = img | |
data['ext_data'] = self.get_ext_data() | |
outs = transform(data, self.ops) | |
except: | |
self.logger.error( | |
'When parsing line {}, error happened with msg: {}'.format( | |
data_line, traceback.format_exc())) | |
outs = None | |
if outs is None: | |
# during evaluation, we should fix the idx to get same results for many times of evaluation. | |
rnd_idx = np.random.randint(self.__len__( | |
)) if self.mode == 'train' else (idx + 1) % self.__len__() | |
return self.__getitem__(rnd_idx) | |
return outs | |
def __len__(self): | |
return len(self.data_idx_order_list) | |
class MultiScaleDataSet(SimpleDataSet): | |
def __init__(self, config, mode, logger, seed=None): | |
super(MultiScaleDataSet, self).__init__(config, mode, logger, seed) | |
self.ds_width = config[mode]['dataset'].get('ds_width', False) | |
if self.ds_width: | |
self.wh_aware() | |
def wh_aware(self): | |
data_line_new = [] | |
wh_ratio = [] | |
for lins in self.data_lines: | |
data_line_new.append(lins) | |
lins = lins.decode('utf-8') | |
name, label, w, h = lins.strip('\n').split(self.delimiter) | |
wh_ratio.append(float(w) / float(h)) | |
self.data_lines = data_line_new | |
self.wh_ratio = np.array(wh_ratio) | |
self.wh_ratio_sort = np.argsort(self.wh_ratio) | |
self.data_idx_order_list = list(range(len(self.data_lines))) | |
def resize_norm_img(self, data, imgW, imgH, padding=True): | |
img = data['image'] | |
h = img.shape[0] | |
w = img.shape[1] | |
if not padding: | |
resized_image = cv2.resize(img, (imgW, imgH), | |
interpolation=cv2.INTER_LINEAR) | |
resized_w = imgW | |
else: | |
ratio = w / float(h) | |
if math.ceil(imgH * ratio) > imgW: | |
resized_w = imgW | |
else: | |
resized_w = int(math.ceil(imgH * ratio)) | |
resized_image = cv2.resize(img, (resized_w, imgH)) | |
resized_image = resized_image.astype('float32') | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
padding_im = np.zeros((3, imgH, imgW), dtype=np.float32) | |
padding_im[:, :, :resized_w] = resized_image | |
valid_ratio = min(1.0, float(resized_w / imgW)) | |
data['image'] = padding_im | |
data['valid_ratio'] = valid_ratio | |
return data | |
def __getitem__(self, properties): | |
# properites is a tuple, contains (width, height, index) | |
img_height = properties[1] | |
idx = properties[2] | |
if self.ds_width and properties[3] is not None: | |
wh_ratio = properties[3] | |
img_width = img_height * (1 if int(round(wh_ratio)) == 0 else int( | |
round(wh_ratio))) | |
file_idx = self.wh_ratio_sort[idx] | |
else: | |
file_idx = self.data_idx_order_list[idx] | |
img_width = properties[0] | |
wh_ratio = None | |
data_line = self.data_lines[file_idx] | |
try: | |
data_line = data_line.decode('utf-8') | |
substr = data_line.strip('\n').split(self.delimiter) | |
file_name = substr[0] | |
file_name = self._try_parse_filename_list(file_name) | |
label = substr[1] | |
img_path = os.path.join(self.data_dir, file_name) | |
data = {'img_path': img_path, 'label': label} | |
if not os.path.exists(img_path): | |
raise Exception('{} does not exist!'.format(img_path)) | |
with open(data['img_path'], 'rb') as f: | |
img = f.read() | |
data['image'] = img | |
data['ext_data'] = self.get_ext_data() | |
outs = transform(data, self.ops[:-1]) | |
if outs is not None: | |
outs = self.resize_norm_img(outs, img_width, img_height) | |
outs = transform(outs, self.ops[-1:]) | |
except: | |
self.logger.error( | |
'When parsing line {}, error happened with msg: {}'.format( | |
data_line, traceback.format_exc())) | |
outs = None | |
if outs is None: | |
# during evaluation, we should fix the idx to get same results for many times of evaluation. | |
rnd_idx = np.random.randint(self.__len__( | |
)) if self.mode == 'train' else (idx + 1) % self.__len__() | |
return self.__getitem__([img_width, img_height, rnd_idx, wh_ratio]) | |
return outs | |